AD-R124 6214 THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERATIONAL 1/3
PERFORMANCE PART III.. (U) HOUSTON UNIV TX DEPT OF
ELECTRICAL ENGINEERING C_J TAVORR ET AL. AUG 81
UNCLASSIFIED AFWAL-TR-81-1131-PT-3-1 F33615-88-C-1895 F/G 1772 - NL

X 2P S I AU
- --\;--.-.i. AR, o

. |) A. .
»
L' | -
.Vl : -
' o b
-. -
h._
.
V... .
- v
. ¢ 1
e
o .
o .
.
-3 _
] “
-n 4 .
. .
o _
- {
o ._,
P _
-<\~_ A
LI}
b
voR
p.o,
h—‘
.

'
i*
]
A‘_

CHART
-A

s #2333

334 mummuhm

NATIONAL BUREAU OF STANDARDS-1963

-
&
—
F 4
[=]
-
3
[
©
&
g
143
>

.A-runcnﬂ- e HY
- & .80 & -thﬂ

sastwl .2

N 20LA I 2 2
e e

¥ TN e i -
PRSI PR

T
as

e

wal124621

o

S L. T R A)

AFWAL-TR-81-1131
PART III, VOLUME 1

THE REMOTE LINK UNIT: A DEMONSTRATION OF OPERATIONAL PERFORMANCE

Part III - Design Manual
Volume 1

C. J. Tavora
J. R. Glover, Jr,
M. A. Smither

Electrical Engineering Department
University of Houston

4800 Calhoun Boulevard

Houston, Texas 77004

August 1981

Final Report for Period 1 April 1980 to 31 December 1980

-

it
SR I

Approved for public release; distribution unlimited. ' J ! !< :
A T

"t

. FEB1 71983

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

g3 ci Civ LSl

| e PR R et b Sutie B Avie S m e 2uvie bak. Sui e M SMACIRSS:"Shie Shuninuciinte Bnic Sl Tta_heas Sdts SNatsS i ae e Jben jhda dian J v e b AR ool S o) T2

NOTICE

when Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

L This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
= releasable to the National Technical Information Service (NTIS). At NTIS, it will
n be available to the general public, including foreign nations.

»f: This technical report has been reviewed and is approved for publication.

72 ¢ L A}}enw(/me_

PHILIP C. GOLDMAN - DONALD L. MOON, Chief
Project Engineer Information Processing Technology Branch
Information Transfer Group Avionics Laboratory

Avionics Laboratory

FOR THE COMMANDER

AR H @b—-u@,\m\

RICHARD H. BOIVIN, Colonel, USAF
Chief, System Avionics Division
Avionics Laboratory

ULAFLEA SR A AN L S e ey
AR . AR
P T R L

oy
|

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify_ AFWAL/AAAT.,
W-PAFB, OH 45433 to help us maintain a current mailing list”.

SROEAS

i e

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

DI, WL o= m e — g~ = -

A

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE ' Bz,gignggggggggg":o“
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-81-1131, Part III, Vol 1 | Apn_A/2Y (DI
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
inal R tf Peri
THE REMOTE LINK UNIT: A DEMONSTRATION OF eport for Period
OPERATIONAL PERFORMANCE 1 Apr 80 to 31 Dec 80
PART III - Design Manual 6. PERFORMING ORG. REPORT NUMBER
Volume 1
[7. AUTHOR(a) B. CONTRACT OR GRANT NUMBER(s)

L+J. Tavora, J.R. Glover, Jr., M.A. Smither,

VM.H. Collins, W.C. Law, P.D. Balsaver, H.C. Hsia, F33615-80-C-1095

and T.T. Lin
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Electrical Engineering Department 6;;32;w°RKUNTNUMBERS
Uni i of Ho
niversity uston 2003 08 07

4800 Calhoun, Houston, TX 77004

11. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE

Avionics Laboratory (AFWAL/AAAT-3) August 1981
AF Wright Aeronautical Laboratories (AFSC) . N;;;ER OF PAGES

Hzight—ﬂa]:tg:sgn AFR, OH ?54'{1
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oflice) 15. SECURITY CL ASS, (of this report)

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side il necessary and identity by block number)

Remote Link Unit, Remote Terminals, Universal Interface, Electronic Nameplate,
Distributed Avionics, Fault Monitoring, Fault Recording.

20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

This report 1s Part III, Design Manual for the RLU Demonstration System, and
provides detailed information on the hardware and software design. It is in
two volumes: Volume 1 contains the description of the design, and Volume 2
contains the Appendices. Accompanying reports are Part I Summary and Part II
User's Manual.

DD ,';2:”73 1473 E=oition oF 1 nOV 6813 oBsOLETR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

...

- N L e W WL R e e e Py - ~ . . - - - . - - - v ~ -

-
-

PR

&

PREFACE

This document was prepared by the University of Houston, Houston, Texas,
on Air Force Contract No. F33615-80~C-1095, entitled "The Remote Link Unit - A
Demonstration of Operational Performance."

The work was administered under the direction of the Information Transfer
Group, Information Processing Technology Branch, System Avionics Division of
the Avionics Laboratory, wunder Project 2003, "Avionic System Design
Technology," Task 08, "Multiplex and Information Transfer Technology," Work
Unit 07, "Remote Link Unit Demonstration." The work was performed during the
period 1 April 1980 to 31 December 1980 and this report was submitted in
August 1981, The Air Force Project Engineer was Philip C. Goldman

(AFWAL/AAAT-3),

(4
T

RN NS A3

e i

The work is a continuation of a previous feasibility study entitled, '"The
Remote Link Unit: An- Advanced Remote Terminal for MIL-STD-1553A." The
results of this study are documented in a technical report entitled, "Remote
Link Unit Functional Design: An Advanced Remote Terminal for MIL-STD-1553B,"
which was published as AFAL~-TR-79-1176, AD-A080126. An add-on to this pre-
vious study resulted in a second technical report entitled, "The Remote Link
Unit: Applications to the Design for Repair Methodology Program," published
as AFWAL-TR-80-1033, AD-A086126.

This report summarizes the design, development, and testing accomplished
under the contracted work. The Principal Investigator and Program Manager was
Dr. Carlos J. Tavora. Drs. John Glover, Jr. and Miles A. Smither were Co-
Investigators. Dr. Tavora was responsible for the system architecture and
modularization of the design. Dr. Glover supervised the design of the soft-
ware for the Link Manager Simulator and the Link Module. He was assisted by
Messrs. Hao-Cheng Hsia, William C. Law, and Parmanand Balsaver. Dr. Smither
was assisted by Mr. Tzer-Tsan Lin in the design of the Interface Configuration
Adapter. Mr. H. Mitchell Collins was 1in charge of the design of the

. Electronic Nameplate and the Nameplate Interface Controller.

This report is organized in three parts: Part I - Summary, Part II -
¢ User's Manual, and Part III - Design Manual. Part III is separated into two
volumes: Volume 1 is the main body of the Design Manual, while Volume 2

contains the appendices.

This is Volume 1 of Part III, Design Maﬁual. It describes the detailed
hardware and software design of the RLUDS, and is organized such that major
sections relate to each functional subsystem within the RLUDS.

N
O H
9§
! SN
R 79
| 1
° o E:"’.‘
fro b4 ot O wt i
i~ ® » - o~ e
: .-! ¢ ® - - W 3
Y M E o 3 a0 &
. ' e {_1:: A ﬂ<
* . ot el N]
3 b~
R~
PRT. . pey
3 ot g 0
RN LN =T

1

»
PR RN 2 G T L P A LN

SECTION

1 INTRODUCTION . .

2 LINK MODULE . .

2.1.1

2.1.2

h 2,1.3

B 2.2 HARDWARE
2.2.1

2.2.2

E 2.2.3
2.2.4

. 2.2.5
% 2.3 SOFTWARE
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5

2.3.6

VI AP A ST A i LI A S A A I = A L s ey
) BaRth N ¥ wnt AT ORI RORGCR

TABLE OF CONTENTS

¢ e e e 2 & 4 e s. 6 * e e s o e »

1.1 THE RLU DEMONSTRATION UNIT
< 1.2 DESIGN CONSTRAINTS . . &+ & &« ¢ & & & o » &
1.3 TESTPROCEDURE ¢« + ¢ & ¢ ¢ o & &

1.4 ORGANIZATION OF THE MANUAL

2.1 DESIGN PHILOSOPHY & « ¢ ¢ & o o o« &

Description
Design Philosophy
Implementation . . . « + « « .+ . .
DESIGN . + . . v v ¢ ¢ v ¢ ¢ o o &
Link Module Hardware Decomposition
Modules and Address Assignments .
Shared Memory Interface Card . . .
Front Panel/ICA Card
NIC/Timexr Card . . . « « « « « & &
DESIGN . . & 4 ¢ ¢ ¢ ¢ o ¢ o o o
Link Module Software Decomposition
Real-Time Executive
Update Task . . « ¢« + ¢ + ¢ o & &
ICAHandler « ¢« « ¢« « .« .
SIC Handler . . . ¢ « « o ¢ o o &
Shared Memory Handler

v

...............
.........

PAGE

o SAAGREACNCEACNCAC LA B AR S S A D U K A SO LS R
TABLE OF CONTENTS (CONT'D.)

SECTION PAGE
2.3.7 Interrupt Service Routine « . . . 81
2.3.8 Command Inte*preter 3 !
2.3.9 Nonresident Software . . . ¢« . + ¢ « + « + « 9]
INTERFACE CONFIGURATION ADAPTER . . ¢« . « ¢ « o « o o« ¢ o« « « 96
3.1 SIGNAL I/O CHANNEL DESIGN . . . ¢ ¢ « « &« ¢ & o s« « « 97
3.1.1 Analog Input Processing +. « . . 100
3.1.2 Digital Input Processing 102
3.1.3 Contact Closure Processing «. « « . « 103
3.1.4 Analog Output Processing . « . « + « + & 104
3.1.5 Digital Output Processing « « « . . 107
3.2 REFERENCE GENERATION . . « v ¢ &« ¢ &« « o« s o « o » « « 107
3.2,1 400 Hz AC Reference ¢« = « ¢« « « « « « 109
3.2.2 +10.00 and +5.00 vdc References 110
3.2,3 HI, LO, and THREShold Level References . . . 110
3.3 ADDRESS DECODING AND CONFIGURATION CONTROL 111
3.3.1 Address Decoding 111

3.3.,2 Configuratifon Control « « ¢« ¢« &« « « «» 115 .
3.4 SERIAL I/ODESIGN . . &« & ¢ o o « « s s o 5 « « + « +» 118

3.4.1 Serial Output . . « + + « ¢ « « o o « s o« « « 120)
3.4,2 Serial Input-Refresh Mode 121
3.4.3 Serial Input-FlagMode « 121
SUBSYSTEM INFORMATION CHANNEL . . « o ¢ « » o o o « o o o « o 124
4.1 USE OF A SUBSYSTEM INFORMATION CHANNEL 126
- 4.,1,1 Electronic Nameplate Conmands 126

vi
T T R S T S R U R Sy

Bt
- R .. P T TP LI R A PR . RETRA .. MR
oo m T T T T e e Lt T e e T T e e e - e e . et e DT

TABLE OF CONTENTS (CONT'D.)
SECTION PAGE
4.1.2 Nameplate Interface Controller Registers . . 132
4.,1.3 Nameplate's Data Structure . . « . « « . « « 142
4.2 ELECTRONIC NAMEPLATE DESIGN . . . + &+ « ¢ ¢« & o o « « 145
4.2.1 Hardware Design . . . « + « o « ¢ o « « o « 145
4.2,2 Software Design . . « « « « o ¢ ¢« « o o « « 156
4.3 PROCESSOR INTERFACE TO THE SIC . . +. ¢ « « ¢« « « « « 161
4.3.1 Nameplate Interface Controller Design . . . 161
4.3.2 SIC Handler Design . . . « . + + « « + +« . « 171
5 LINK MANAGER . « ¢ & & o v s o o o o o o o s o o « s o « « s 172
5.1 DESIGN OBJECTIVES . . . & o &+ 4 ¢ o o o « o o o« o » « 172
5.2 SOFTWARE DESIGN OVERVIEW . . ¢ « + &« o o« s ¢ « o + « 173
5.2.1 Genéral-?eatures S &
5.2.2 Structure of the Simulator 174
5.3 COMMAND INTERPRETER (CI) TASK . . « ¢ + + &+ « « « + « 178
5.3.1 LMGCommands . . . + 4+ « « « « s « o « o o « 183
5.3.2 LM Function Commands « « « « « » « 183
5.3.3 MPCommands . . . « « « « « « o o « + « o « 186

5.4 SHARED MEMORY DISPLAY (SMD) TASK 188

- 5.5 DATA TRANSFER ROUTINES . . + « « « « = « o = « » . . 188
¥
- 5.5.1 Data Transfer Handshake Protocol 191

5.5.2 Data Transfer Modules . . . « ¢« « « « « « « 194

AR P+ Ja

5 . 6 UTILITY ROUTINES e 8 8 e ® 5 & 8 5 & * & & 8 o * e o 195

5.6.1 Data Conversion Routines . . . « « « . « « . 195

5.6.,2 Data Transfer Routines . . . « « . « . « «+ . 195

RN . R S S S T T TS P -
A AR L e T e Tt Sttt e T e S e e T T BRI - . !
% Y AT IR, PRI hAPL LI N U N W AP P CRE AR IR P PP P PR T Y O R

................
....................

TABLE OF CONTENTS (CONT'D.)
SECTION PAGE
5.6.3 Miscellaneous Utility Routines 19¢
5.7 SM HANDLER . ¢ « « o o o s o o s o s s o o o o o o o 196
5.7.1 SM Handler Functions « +. . « . 197
5.8 DRI-CDRIVER . & + &+ « s ¢+ st o s o s o s o s s s o 200
5.9 DEMONSTRATION EXAMPLE ¢ ¢ o s ¢ o o o « o o & 200
6 SUBSYSTEMS . . o o ¢ o ¢ o o ¢ o o o o o s o s ¢ s s o o o @ 215
6.1 SERIAL SUBSYSTEM « . ¢ o v o v v v o o o o o 275
6.1.1 Hardware Design . . . « ¢ ¢ ¢ ¢« o o &+ o o & 216
6.1.2 Software Design« + & ¢ o = ¢ & « « & 220
6.1.3 Nameplate Data . . « « ¢ o ¢ ¢ v o+ ¢ o . 299
6.2 SYNCHRO SUBSYSTEM &« ¢ ¢ ¢ v s ¢ o o o o o o & 223
6.2.1 Hardware Design ¢ s ¢ o . 993
6.2.2 Software Design . . . + . ¢« « 4 ¢ ¢ ¢ o . W 226

6!203 Nmpl‘te D.ta . . * o o L] 228

APPENDIX A SOURCE CODE TAPE DIRECTORY . . « « ¢ « o + « » « o« . 230

APPENDIX B HARDWARE SCHEMATICS . . « « « o o o o o o o« o o o o o 234

t s

_55 APPENDIX C SOFTWARE FLOW CHARTS . . . & « « &« &« s &« « o o + » . 317

e i §
AL
[RV P

mmmczs ® ® & & & e+ s e 6 & P F 4 s 6 8 & & o a4 s % & v e @ " e o 8 75

1

TR
~g J‘.J ‘_‘l !J a’.‘..‘

RAPL

N

viii

-
1)

-
e

B A S YR A R AT A i AP A R Aty b
LIST OF ILLUSTRATIONS
FIGURE PAGE
1 RLUDS Implementation of the RLU © s e e s e v e s 2
2 RLUDS Configuration . . . « « . . . e o e v s e 2
3 Link Module Hardware Architecture 6
4 Link Module Enclosures . . . « « « « & o o o « o . . . 8
o 3 LM Front Panel . . « ¢ ¢ v ¢ ¢ o ¢ o ¢ o o s o o o N 11
g‘ 6 IMBack Panel . & o « v ¢ o v s o o o s s o o o s s o 0 a0 s 13
. 7 LM Memory Map . « & ¢ v ¢ o v v o o o o s s e s e 00 e e 14
8 SM Block Diagram . . « « « o o « o o o ¢ o o o o o s o o o o 16
9 Handshake between the LMG and LM fﬁr (a) Read, (b) Write and
(c) Read=Modify-Write . . . & « & ¢ ¢ ¢ o ¢ ¢« s o o o o o 17
10 SM Timing Diagram . . « &« . o o« o « o o o o o o o s o o o o o 18
11 FP/ICA Card Block DASRTEI « « « = « & « = o o o o v s v o o« 90
12 Executive Interactions ¢ ¢ ¢ s ¢ 0 o o o s o o s 27
13 Transition of States ¢ v ¢ ¢ ¢« s ¢ v 4 v s 0 o 26
14 The Real-Time Executive and Services 3¢
15 Interaction of the Executive « . o 2 ¢ o v o v o v o 41
. 16 Update Task SLTUCLUTE & + &« & « o « o o o o o o o o o o o o o 44
17 Update Task Interactions &+ ¢ ¢ ¢ ¢ o s o ¢ o o« 46
) 18 Memory Map of ICA Buffers . . . « « « « ¢« o o ¢+ ¢ o o o o o o 47
19 Parameter Table Set-up by Macro . « + + +« ¢ ¢ ¢« s s ¢ « + « « 5o
20 ICA Handler SETUCLUTE « « & « « + % o o « s s ¢+ s s s s o + o 5§
21 ICA Handler Subroutines and their Hierarchy ©5¢
22 SIC Status Byte in Shared Memory . . . « « « ¢ ¢ « ¢« « ¢« « « 58
] 23 SICStatus Table ¢« ¢« ¢ ¢ s ¢ s s o o s o s ¢ s+ 59
’.'; ix
N]
s s g T T ST e T T e s

LIST OF ILLUSTRATIONS (CONT'D.)

FIGURE PAGE
24 Format of SIC Handler's UFT . . « + ¢ « ¢ v ¢« ¢ o ¢ o o s o« « 65
25 SICHandler Task . « ¢ ¢ ¢« ¢ v ¢ ¢ ¢ o o s ¢ o s o s s o oo 67
& 26 SMHND FIOWChATE « ¢ « & + 4 o o o o o s o s o o o o o o o s o 74
g 27 SMHND Calling Parameters Table 75
“ 28 SMMemory Map « . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 0 s s s 0 0 s e e 77
-;;.: 29 INT FLowCh&ZT ¢ o ¢ & ¢ ¢ ¢ ¢ o o o o s o o s o o o o o o o o« 83 .
i 30 CMDITR FIOWCHATE « « o v v o o o o o o o o o o o o o v o o« 88
é?’ 31 LMFT FloWChart .« « « o o o« o+ o s o o o o o s o o o o s s « « 89
;, 32 Command Interpreter Interactions g3
‘53 33 Decomposition of the ICA into Sections g8
::; 34 Block Diagram of a Signal I/OChannel g9g
R 35 Block Diagram of a Reference Generation System 108
:_i 36 Block Diagram of the Address Decoding Section 112
,_ 37 Memory Map of ICA Buffers ¢« ¢ o v ¢ v o o o v o 114
o3 38 ICA Configuration Words . . « «. « « ¢« ¢ ¢ « ¢« = o ¢ o « « « « 116
? 39 Block Disgram of the Serial I/O Section « « « +» . 119
"j. 40 Serial Control Byte « ¢ ¢ ¢ o ¢ = ¢ o o o o o o o o o 123
. 41 The Subsystem Information Channel . . . « « « + « ¢ o & + + « 125 “
'!;’g 42 NP Diagnostic Result Data Bytes . . « « « « « = « « s & « « « 131 .
:"; 43a SIC Command Byte Structure . o « « ¢ ¢ o ¢ o ¢ o o o o o « o 134
43 SIC Command Response Byte Structure . . « « . + ¢« ¢« o « o « « 134
;’: 4ha Nameplate Status Byte . . . ¢ ¢« ¢« ¢« ¢ v ¢ ¢ ¢ ¢ s o s o ¢ « & 135
;: 44b Error Diagnostic Byte . . . « « «» &+ o « ¢ s o o s o s o o o « 136
“; 45a SIC Status Register ¢ « « « o o s o 2 o s s s o o137
;-; - 45d SIC Control Register . . . « « ¢ ¢ « ¢ o o o o o ¢ o o o o« « 137
3 .

T . e arr v g st taa - - v . e, - - . . \
RIS \\ ‘.r'a '. ‘.‘-'7" WL g LY R A S L M, x Y a e ; ORI

3 g ‘¢-9‘€ -

LIST OF ILLUSTRATIONS (CONT'D.)

FIGURE PAGE
46a SIC Communication Control/Status Register . . . « . +« « « . . 140
46b SIC Communication Data Register « . . ¢ ¢ « « « « o 741
47 Nameplate Directory Structure ¢ ¢ ¢ ¢« o . . a4

. 48 Subsystem Performance Record ¢ ¢ ¢ « ¢ « o « o o« o & 146
49 Electronic Nameplate Block Diagram « . . 148
50 SIC Bus Comnections« o v v v o v v o v 0.)5,
51 Nameplate Main Program . . . « ¢ « o ¢ o o o« o o o s o o & & 157
52 Nameplate Diagnostic Program ¢« « + ¢ ¢« ¢ o ¢ « « & 160
53 Nameplate Interface Controller Block Diagram 1g¢
54 Block Diagram of LMG Simulator 375
55 Block*ﬁiagram of LMG Simulator System « . « « « « . 176
56 Structure of the Command Interpreter Task « . 179
57 Structure of Shared Memory Display Task 189

58 Layout of Shared Memory Display « . . « . « « « « . 190

59 Data Transfer Handshake Protocol + ¢ ¢ ¢ ¢ o« ¢ « o+ & 192
60 Structure of the Data Transfer Modules 193
. 61 Handshake between the LMG and LM for (a) Read, (b) Write and

(C) Read-mdify-write ® &8 & & e & ¥ e » e & & o e ° s & ® @ 201

o

Eﬂ d 62 Indirect Command File R2A.DEM « « = ¢ « « « + « « + « 203
; 63 Indirect Command File R2B.DEM . . « « « « = « « « « « « « «+ « 204
;g 64 Indirect Command File R2C.DEM « ¢« « v ¢ ¢« + « « « 205
Eé 65a Display on CRT #1 v v ¢ o s o v o o s o o o o« + 206

65b Diﬂplay on CRT #1 e ® s e & 8 6 e & e 6 s & o+ & o+ s s+ s s * o 207

650 Displly on CRT #1 ® o ¢ % e e % e @ e 8 8 6 ° o " s v e s s > 209

B I) DU T
ts
SANF OTAS

65d Displﬂy on CRT #1 ® o e » 8 e @ & & s & 2 e o s o s s e 2 s 210

.........

........

.......

- Lann o - PR e gl W™ @7 T s T 8T e T N
B o TR e e e e e T T . i : ORI O
Fa
Wl

LIST OF ILLUSTRATIONS (CONT'D.)

FIGURE PAGE
6ba SM Display on CRT #2 v ¢ v ¢ o o ¢ o ¢« o ¢« s o o o o o o o s 211
66b SMDisplay on CRT #2 . & ¢ ¢ ¢ ¢ & o v v o o ¢ o o o o o o 212
6b6c SMDisplay on CRT #2 . . & o & ¢« v ¢ ¢ ¢ o o o o o s o o o & 213
67 Block Diagram of Serial Sending Subsystem 217
68 Block Diagram of Serial Receiving Subgystem 219
69 Serial I/O Program . o« « o « « o o o o o o o o o o s s o & » 221

70 Map of Nameplate Data for Serial Subsystem 224

71 Synchro Implementations . . « + ¢ « & ¢ ¢ o & ¢ o o o s o @ 225
72 Synchro I/O Program . . . « + o o o o = ¢ o o « o « « o o 227

73 Map of Nameplate Data for Synchro Subsystem 229

.

.
RN .ot ~ - B L . R Saty et
D TP S, G SR IR TP I VAR Sl Sl S WP NP, W AP AP PUNED NP TSI TN W 1 - - PRI W YN Y S - P Ul Vol Gl R Wy i el .

LIST OF TABLES

TABLE

2 L ink Mo dule Tasks - . L4 . L] . Ld . - L] - . . . - L] . . . L)

4 List of Global Common Variables ¢« « « « .

5 ICA Configurations . .« « + & v ¢ ¢ 4 o o o o o o ¢ o s s

8 SIC Handler Request Status Codes . . + « « « o + ¢ &« o «

9 SIC Handler Hierarchy . « ¢ + « ¢ ¢ o ¢ o ¢« o o o o o «

11 SMHND Status Return Codes . . « « ¢ ¢ v ¢ ¢ ¢ ¢ o ¢ o o o
12 IRQ SOUXCES . &« + & « o o s o 5 o o s o s o o o o o s

13 IMCommands & ¢ & ¢ ¢ ¢ ¢ s ¢« s o s o o 0 0 o
14 CMDITR Status Return Codes . . . « & ¢ =« ¢ & ¢ ¢ o & o o &
15 LM Command Parameters o o« « « o« o « o s o o« o
16 Nameplate Commands . . « « & o + = o s o o « o « o s o o &

* 17 Electronic Nameplate Specifications

18 NP Status Display . . ¢ ¢« & ¢ o o ¢ o o ¢ ¢ o o o o o o &
19 SIC Bus S1gnals . . . v o« ¢ v ¢« ¢ o o o « « « ¢« o o o o &

20 Nameplate Program Directory . . « « « o o o o o &+ o o & &

21 Nameplate Interrupt Handlers . . « « « ¢ &« « ¢ « « 4 o « &

RN P | SRR

22 Nameplate Global Common . . « + « ¢ o s o « s ¢ o o« o o &
23 RDCOMM-Read Command Local COMmMON .+ . « + « + s s « o o s o«

xiii

P
- . - -
..... . - . . A . N . - . -

PP) A . t. Bamobiiin =8 el A - m_e m o P T Y

1 Link Module Main Chassis Cards . « . « ¢« « ¢« & o ¢ ¢ o« ¢ o & &

3 Programs and Their Functions ¢ ¢« ¢ ¢« o ¢ ¢ ¢ « & &

6 ICA Handler StatuS . . o« « o o o o o s o o o o s s o o o o o

7 SIC Handler Functions . « + ¢ ¢ « o ¢ ¢ o o ¢ o o » o o s »

10 SMHND Functions . . ¢ ¢ ¢ ¢ o o s o o s o s s s o o o s o &

PAGE

10

.. 23

37

49

53

61

68

32

. . 162
. . 163

. . 164

LIST OF TABLES (CONT'D.)

TABLE ' PAGE
24 Write Memory Local COMmMON . + « « + o o« « s o s s o « o &« o« » 165
25 Nameplate Interface Controller Specifications 168
26 NIC RegiSters . o o « o o o o « o o o o s « o o o o o« o« o+ 169
27 LMG Commands .+ + « o« « s o o s s o o « s o s o o =« o o s « o 181

28 LM Function Command . « « « « ¢ ¢« ¢ ¢ o ¢ o o o o s o o o o @ 182

'E;. 29 MP Comands e o s & " e . o LI) *® s ®w s s e . . o * e e @ . 184

o 30 Functions of SMH . . . ¢ ¢ ¢ « o ¢ o « ¢ o s « o ¢« o« s o o » 198

-

..........

AC
A/D
BCD
CMOS
CPU
CRT
D/A
DC
DIP
DMA
EAROM
EEPROM
EPROM
FP
ICA
1/0
ISR

& sIC
4 SRU
. TTL

...........

LIST OF ACRONYMS

Alternating Current

Analog to Digital

Binary Coded Decimal
Complementary Metal Oxide Semiconductor
Central Processing Unit
Cathode Ray Tube

Digital to Analog

Direct Current

Dual In-line Package

Direct Memory Access
Electrically Alterable ROM
Electrically Erasable Programmable ROM
Erasable Programmable ROM
Front Panel _

Interface Configuration Adapter
Input/Output

Interrupt Service Routine

Link Address

Link Module

Link Manager

LM Processor

Least Significant Bit
Maintenance Port

Most Significant Bit
Multiplexer

Nameplate Interface Controller
Nameplate

Printed Circuit Board
Peripheral Interface Adapter
Programmable Read Only Memory
Random Access Memory

Remote Link Unit

Remote Link Unit Demonstration System
Read-Modify-Write

Read Only Memory

Remote Terminal

Subsystem Information Channel
Shared Memory

Shop Replaceable Unit
Transistor-Transistor Logic
User File Table

..........................

x
4
3
-

ALh 0 - £

SECTION 1
INTRODUCTION

N
S
\‘This document is a design manual for the Remote Link Unit Demonstration

System (RLUDS). The Remote Link Unit (RLU) is a new design concept for re-
mote terminals. This document contains detailed design information on the
RLUDS\ Design and implementation of the RLUDS was performed for the Air

\\\
Force Wright Aeronautical Laboratories under contract #F33615-80-C-1095.

/

/

// 1.1 THE RLU DEMONSTRATION UNIT

\‘\‘ ’;
"The RLUDS described in this design manual is an operational hardware

breadboard prototype that performs mostof the important RLU functiézjf The
RLUDS is not intended to be a complgpe RLU prototype but it demonstrates
the most unique parts of the RLU. g&his effort has demonstrated the feasi-
bility of implementation of the Link Module (LM), the Interface Configura-
tion Adapter (ICA), the Electronic Nameplate (NP) and the Interface between
the Link Module and the Link Manager. The Link Manager (LMG) was simulated
with a PDP-11 computer. The extent of RLU implementation encompassed by
the demonstration unit is 111ustratedﬂt? Figure 1. The detailed design of
the RLUDS 1is based on the functional deéign described in the document,

"Remote Link Unit Functional Design: An Advanced Remote Terminal for

MIL-STD-1553B" technical report AFAL-TR—79-1176..)The configuration of the

|

RLUDS is presented%t? Figure 2.

\ 1.2 DESIGN CONSTRAINTS

In order to implement the RLUDS within a short time span, it was im-

1

T < CRNESeas SN - SR TR s T o A S A I A SR R LS |
A
" MAINTENANCE PORT ~
= !/ SHARED MEMORY SUBSYSTEM '\
ot F= { 1cA C. \

8US A

\U HOSuLE NIC NP
MULTIPLEX 8 (L™) J
-"'ho—-—-
‘Q kawos IMPLEMENTATION .

°
MULTIP L4
ULTIPLEX a .

D LM

REMOTELINK UNIT
{ RLU)

» S I
et e e
' P R

ag

T T v
T, LI R Y3 t

e

L (R R TR

A Pt ettt

o A
r—

Figure 1 RLUDS Implementation of the RLU

LINK MANAGER (LMG)

SIMULATOR
LINK MODULE (LM)
SERIAL
SUBSYSTEM
] PR R
/6800
PROCESSOR .
NP
OPERATOR
CONSOLE UNIVERSAL Siachao
LMG/LM CONNECTOR
INTERFACE -—
MAINTENANCE -—
PORT NP

Figure 2 RLUDS Configuration

A - ALV S SO |
M L SR S ./ PRI - e e

A
SN

R 05 1 ATAARB NI B 4

perative to limit the design effort to the development of components which
were nonexistent and constituted critical elements for verification of the
RLU concepts. In order to accommodate use of off-the-shelf components, it
was necessary for the RLUDS design to deviate from the RLU functional de-
sign (document AFAL-TR-79-1176). Some of the required deviations are
identified in the statement of work for the RLUDS. Other deviations have
been identified in the process of designing the demonstration system. In
each case, a deviation to the functional design was allowed when it related
a change that did not alter the RLU concept to be evaluated, but rather
represented a design scaling of electrical or timing dimensions. The most
significant difference between the RLU functional design and the RLUDS
stems from the use of an 8 bit microprocessor for implementation of the
Link Module. This selection,which was dictated by the available micropro-
cessor development facilities at the University of Houston,led to an 8-bit
LM internal bus instead of the 16~bit bus described in the functional de-
sign. Use of the 8-bit LM internal bus has caused corresponding dimensional
changes in the Interface Configuration Adapter, the Nameplate Interface

Controller and the Shared Memory.
1.3 TEST PROCEDURE

A test plan that outlines the approach used to demonstrate the oper-
ational performance of the RLU is presented in the document entitled, "A
Test Plan for the Remote Link Unit Demonstration System." This test plan
describes a three part test procedure that demonstrates the operation of the
Interface Configuration Adapter, the Subsystem Information channel and the

Remote Link Unit.

- - . .

..............

1.4 ORGANIZATION OF THE MANUAL

This manual has been organized in a manner that simplifies the docu-
mentation of the RLUDS design. Sections 2 through 5 describe the major
RLUDS components in terms of the theory of operation, the hardware design,
the software design and the test procedure. Section 2 describes the L ink
Module. Section 3 describes the design of the Interface Configuration

Adapter. Section 4 describes the Subsystem Information Channel which in-

cludes the Nameplate Interface Controller, the nameplate bus and the

Electronic Nameplate. Section 5 describes the Link Manager simulator and

:;! the software required to support the RLUDS demonstration. Section 6
:}i describes the serial and synchro subsystems used in the RLU demonstration.
:? The detailed hardware diagrams and parts lists are contained in Appendix

B . The detailed software description is presented in Appendix C .

NT N ® e e e L

AP TN I e - St

P P N W . R L TR D AP R -
i, . x,

Sl Eia T Y T S T T S S
Nl SERC R U R . RSN RS
- LIRS - s ey UL
N

1

R A A " S LA B AT - < - -y

" SECTION 2

LINK MODULE

2.1 DESIGN PHILOSOPHY

2.1.1 DESCRIPTION

The Link Module (LM) consists of a parallel bus structure with
Motorola 6800 Processor, PROM, RAM, and three separate interfaces as shown
in Figure 3. Each interface connects to the common bus structure of the
processor chassis. There is a Shared Memory (SM) interface to the Link
Manager (LMG) through which all communication between the LM and the LMG
takes place. There is a Nameplate Interface Controller (NIC) interface to
the subsystem nameplates for serial communication between the LM and the
NP's on the Subsystem Information Channel (SIC) bus. There is a parallel
digital interface to the Interface Configuration Adaptor (ICA) for communi-

cation between the LM and the ICA,

2.1.2 DESIGN PHILOSOPHY

The Link Module (LM) is the intelligent link between the Link
Manager (LMG) and the subsystems. It consists of a processor with three
interfaces.

The following design goals were established for the Link Module

design:

oo
'l
.

1) Minimize hardware fabrication.

L ol

) -‘.n .'n

2) Utilize off-the-shelf items.

ERM § * DAEN

L KL

3) Concentrate development effort on conceptual features of the
RLU not yet demonstrated as feasible.

4) Provide built-in trouble shooting capability through the use
of

e
. !

AR

L&~ .
w

................
..................

SN N A M e St e e i
..............
...........................
e

"ICA

|_Front Panel

r T G WIS ConaEp b I — h— amSw
: Je
I interface SUBSYSTEM
| Configuration U5 DaTA
: Adapter 1] CHANNEL
J1| |SHARED [(1ca) H (SDC)
LINK ‘$_Jumv l__—";"' ' |
rocessor
MANAGER LMP) :
| | (SM) :‘:':;PW | 5 SUBSYSTEM
| "—’”co ntroller INFORMATION
| (NIC) | CHANNEL
AM '
| R l
b e e e J .
Figure 3 Link Module Hardware Architecture
6

Modularized enclosures,

[Front panel status indicators, and
] A software monitor debugger.
2.1.3 IMPLEMENTATION

The microprocessor 6800 was chosen for the LM implementation since
it met the processing requirements and substantial hardware and software
development support for this processor is available at the Digital Control
and Automation System Laboratory at the University of Houston.

The LM is distributed among two chassis as shown in Figure 4 .
Except for the ICA which is housed in the top chassis all other LM components
are housed in the main chassis. The main chassis is a Motorola chassis with
a card cage and bus system that accepts a variety of off-the-~shelf modules

for the 6800 system.

2.2 HARDWARE DESIGN

2.2.1 LINK MODULE HARDWARE DECOMPOSITION

The Link Module (LM) hardware comprises two chassis: main chassis
and extension chassis. The main chassis holds power supplies, card cage
with various cards (the processor, program memory, data memory, Shared Mem-
ory, Nameplate Interface Controller, bus connections to the Interface Con-
figuration Adaptor), front panel and back panel.

The extension chassis houses the ICA and mounts directly on top
of the main chassis and contains 3 circuit boards, a front panel and a back
panel. The ICA front panel displays ICA configuration information which is
useful for monitoring the interface operation. The back panel is used for

power and signal connections.

Extension (ICA)
Chassis
Main
Chassis
Figure 4 Link Module Enclosures

T

The cards in the main chassis are listed in Table 1 . The chassis
(Motorola P/N M68S8MMLC) contains a triple DC output power supply (+5V, +12V,
-12V) and a 10 slot card cage. Two additional voltage supplies have been
installed in the main chassis: a dual DC output (+15V, -15V) for the ICA,
and a single DC output (+25V) for the NP. The CPU card (Motorola P/N
M68MM01A2) contains a Motorola 6800 eight bit processor, 1 MHz crystal con-
trolled clock, 1K byte read/write memory (mot used in the LM implementation),
four sockets for 2716 EPROMs (2K bytes each of program memory), four eight
bit parallel digital ports (not used in the LM implementation), and one
serial RS-232C data terminal interface (used by the M68MMO8A ROM for system
debugging). A program memory card (Motorola P/N M68MMO4A) provides sixteen
sockets for 2716 EPROMs for 32K bytes of additional program memory space.
Data memory is provided by a Motorola MEX6816-1HR which has 16K bytes of
read/write memory. Three custom interface cards (SM, NIC, FP/ICA) are based
on Motorola MEX68USM universal interface cards which provide address decod-
ing and bus buffering.

The extension chassis houses the ICA. This chassis has three

circuit cards: a control/processor interface module and two signal I/0

TR

£a

] . interface cards (one for each ICA group). The ICA extension chassis fits

E physically on top of the LM main chassis.

; A front panel layout is shown in Figure 5. Located on the front
g panel are various display indicators, facility to write into Shared Memory,
2 power on/off switch, and a reset button. Additionally, the extension

;3 chassis front panel has various ICA status indicators.

g The main chassis back panel has the AC power input, three fuses

(115VAC to LM, +5VDC to NP, +25VDC to NP), a fan for air circulation, a
9

REER TR o
.
T

oW T et Nt T - e R
R IPRE PN IPNE PR TN L v am e e e e - ‘_;,_’___1

JONICIRE SR L e e T TR,
Table 1
LINK MODULE MAIN CHASSIS CARDS
Slot # Card # Description Connectors
1 1 FP & ICA INTCBL S@@ to Front Panel
& INTCBL 20¢ to ICA.

2 - Empty] e==—==--

3 3 PROM None

4 4 RAM None

5 - Bnpty

6 6 NIC INTCBL 3¢9 to NP.

7 - Bmpty @ | eee---

8 8 CPU INTCBL 488 to CRT.

9 9 SM INTCBL 100 to LMG.

1g - Empty | e-----

[4

P
In_.
o
i~
.
w 10
:‘;g.“
AR s N o . L L . N 4

4
s [3UBd w02y WT ¢ aandyy
.
. ' .
‘y

v.S .. . \ sves; EDIONOR

H .. - cmarenhe l-«.lh“”“..“._- [i

.

. ' K 4 29N ey vt

M M K3 . - heod ﬁ. ‘IL

-..& N,N. E . »EVA LNBONINRON

‘ (u.f . e - i

ERR X ¢ o ¥ _
w.v,. i S . T votumme 3 .
v.;. ‘ 3 . a . ' . e ¢
‘.‘&~ . l !.-l' o l .M | L
,\\ d : L
..\g)] - % .
".,..- . “! Lnpuidad® d“-q M ’

! : -
, - e une oW : k
ﬁ... WE1SAS NOLLYUASNORDO HYWH LINA 3N =
& -
P L
& ol
e - haie *

e
)
°
°

lie]
i®
!

Y 1 T
.

. 30 s O0R
L wviwe
b

“a
1 g

. - k)
-. : .

.

.

s

g ; .

- . . P 21 P e B et e
ey nem T ed 4
.

AT e e e

connector to the LMG for communication through Shared Memory, a connector
to the Electronic Nameplate, connector to a data terminal for system de-
bugging, and a toggle switch for choosing the restart vectors (auto or
monitor). The extension chassis back panel has three fuses (+5VDC, +15VDC,

-15VDC) and a connector to the subsystem.

2.2.2 MODULES AND ADDRESS ASSIGNMENTS

The address assignment for each LM module is shown on the memory
map presented in Figure 7 which shows the Motorola M6800 address space
of 64K bytes. All addresses shown in this figure are expressed as hexa-
decimal numbers (base 16). The 16K data memory is in the lower addresses
from @@P@ to 3FFF, with the 1K byte on the CPU card disabled to avoid
address conflicts. The program memory card has two independent 16K blocks.
The first block (addresses 4P@P@ to 7FFF) contains the software tasks EXEC,
UPDATE, ISR, CMDITR, part of NPHND, and ICAHND. The second block uses only
one quarter of its address space (88@@ to 97FF) and contains the software
tasks SMHND and the rest of the NPHND. The SM and NP fit into addresses
8000 to 83FF. Addresses 84@p to B87FF are used for parallel and serial I/0
on the CPU card. The ICA and front panel interface modules fit into
addresses 98@@ to 98FF. The Motorola M68MMOBA MICRObug ROM monitor resides
in addresses F8@@ to FFFF (a back panel switch may be used to enable the

monitor mode of operation).

2.2.3 SHARED MEMORY INTERFACE CARD

The Link Manager (LMG) and the Link Module (LM) perform all of
their communications through a shared memory interface consisting of 25€
bytes of read/write memory. The LM makes its accesses to SM directly,

12

-

«
[N

Tl

. ﬂ"?"’tr‘:‘:ﬁ:"y"’: '.“ ‘:.--.:v EY 3

i

s

.

L R

isuegd yoed W1 9

Ve ey e,

utisiencen VIGHOLON »
e LT}

I rem + - -

1Y v v 8 SivswI

. ers

EP LR .u

A a2’ nm e

13

o ¥ v W P —— — PR ey ety
SN A A T A B R S ORI - . D P ERMENEN
P T e ST T B R

MICRObug
£
FFFF e
98FF -
Reserved 3FP PlA's
Fooe 200
ICA
Unused |
€009 77
redundant / 1 74 44
NPHND 2
Dode
SMMND
Reserved [7 [
(4 [[}
STFF
[[]} 2 PlA's
Unused
| ACIAto CRT
ADDD on CPU card
8409
NIC
9000 8300
Unused
8200
I SM PIA
soeo 8100
KW SM
[1)
7000
TFFF
NPHND |
6000 | 16X PROM T008
ICAHND
T0800
COMMAND
5000
INTERPRETER
$600 I THTERNGFT
UPDATE
8000
3000 EXEC
[[)
2000 | 16K RWM
3FFF
1000 + Spare -
2000
NPHND
; 880 2400
b . 1ICANND
2000
L.~ SMHND
s 1CO0 ([EommaAiD
.-:,: 000 INTERPRETER |
o oo | REmET |
UPDATE
p— 1000 e3FF
L. oo o
- NON-RESIDENT W SM
TASK AREA oree
. pore
- (27 si00
EXecC
90068 5000

6 %

v
W
.

Figwn 7 LM Memory Map

14

| AN L PR L L R SO S e e e A R A DA o AT P S A AP TG T AN A T ARt T AT & |

:-' just as it does to any other memory location, since the SM is in the memory
space of the LM (at addresses 8@pp to 8¢FF). The LMG which is simulated on

. a DEC PDP 11/70 interfaces to the LM Shared Memory (SM) through a DEC DR11(C

board as block diagrammed in Figure 8 . All transfers are single 8-bit
byte transfers and are done with a complete handshake for each byte using
three of the four control lines shown in Figure 8 .
The LMG interface board has two output control lines labeled CSR§
‘ and CSRl. These are used as Chip Select (CS) and Write Enable (WE) respec-
tively to the SM hardware. The LMG interface board has two input control
lines labeled AREQ and BREQ. The BREQ line is unused, while the AREQ line
is used for the return handshake for all data transfers. The corresponding
handshakes for read (RD), write (WR), and read-modify-write (RMW) are
diagrammed in Figure 9 . A complete handshake is performed for each byte
of data transferred between the LM and LMG.

The SM address and data buses are shared between the LM and LMG
and thus cannot be accessed by both at the same time. This is resolved by
making the LMG accesses to SM by Direct Memory Access (DMA). This DMA is
implemented by having the LMG CS line act as a halt request to the LM 6800
processor. The Bus Available (BA) signal from the 6800 is then used as the
returning handshake AREQ to the LMG. Details of this timing can be seen in
Figure 10 ,

RMW is a special implementation which allows each side to read a
data byte, modify the value, and write the value back without the other side
being able to access it during this time. For LMG accesses this is no prob-
lem using the special RMW handshake shown in Figure 9 since the LM is
halted while LMG is accessing. For the LM a special procedure is needed.

15

PRIV IR P T NN DI R - L . - I O . . .
— b PP WA ST SPNE AP I P AT W S a R

........

LM

AD - A7 ::’Ep.mn

Do - D7 :}ﬂ

ADDRESS BUS

(ON
USM

DATA BUS

CARD)

L L e

L
[9

SHARED
MEMORY
236 X 8 RAM

R/W |cs

Ly o

R/W —>—

GO/HALY —=—
BA—>—

Figure

DMA

...............

LMG

—at—— CSRO

CONTROL

LOGIC

A

8 8SM

.......

16

-

CSRI
AREQ

r:'..,__lv."d_‘_‘. P ‘\,_s‘.‘l‘:‘-‘ e .-.V._._.T:' »»»»»»» 7t-- X
A
,- —» CSRI
— oyt —{valid addr. D))
l —p» CSRQ 4 |
N <« in {valid data))))
o a— AREQ | L
l (a)
> — csr | |
o — out ——(volidaddr. 8 dota W)
‘ —> CSR@® l ' |
2 <«— AREQ [l
(b)
—= CSRI J L
—» out —valid oddress H—
— out —{valid modified dat
— CSRO ____ | L
<« in —{valid data D
«— AREQ |
(e)

Figure o Handshake between the LMG and LM
for (a) read, (b)write and (c)read-modify-write.

17

.................

-. WY

Nt T I S R e e S St SRR HR I B & A
P R R e e e T A A

fe—>{
o []) I
esri \|\|\ 2 . [T1]]

N l€—NOTE 2 —>j
Go/RATT . i .
BUS NOTE 1) : +
AVAILABLE > .,,,, ' . |
AREQ . E |
[} 2
. Al
LMADR IN ENBL N
[}
LMGR/W) .
—
LMGCS . |
~>|le—100ns . 100 ns —ple—
LMG ADR ENB
LMG DATA ENB N . ‘
NOTES: | olus<t<i2us DEPENDING ON STATUS OF
CURRENT 6800 INSTRUCTION.
2 g<t<> SHOULD BE KEPT SHORT SINCE LM
IS HALTED.
Figure 10 SM Timing Diagram
18

T
L
‘-
hS
v o
>
i
r—
-

el

N I BN

emommaA . 4 e ¥

Built onto the SM card is a Peripheral Interface Adaptor (PIA) chip with an
output pin (LMRMW) used to temporarily disable the LMG from accessing SM.
When this LMRMW is high the LMG CS line cannot cause a halt request to the
LM 6800 processor. Any LM software needing to do a RMW operation must first
set LMRMW high, do the RMW operation, and set LMRMW low. If the LMG is
attempting to access SM at this moment, it will simply appear as a slow re-~
sponse to the handshake.

Whenever the LMG issues a function command (by writing into SM
location FF) or issues a data transfer command (by writing into SM location
FE) an interrupt to the LM is generated. This is implemented by decoding
the SM address bus with LMG CS and LMG WE and inputting these to interrrupt
control pins on the PIA.

Four access strobes are generated and sent to the Front Panel (FpP)
card for display on the FP.

Detailed schematics can be found in Appendix B, Section 2-B.

2.2.4 FRONT PANEL/ICA CARD
The LM Front Panel (FP) pictured in Figure 5 1is connected to a
FP driver card as block diagrammed in Figure 11. This FP card consists of
three Motorola Peripheral Interface Adaptors (PIA's) which each have two
8 bit parallel I/0 ports. This is a total of six ports which are memory
mapped in the LM. Thus the FP displays and switches are software driven by
a subroutine in the LM which is called by the Update task. 71he FP informa-
tion is only valid when the LM is running in a real-time mode of operation.
The bus connections to the ICA are on the same card as the FP
PIA's. These are independent of the FP and are on the same card only for
convenience. Detailed schematics can be found in AppendixB, Section 2-C.

19

r— PV SN Y S S O S

L

-
:‘
sy

S
t“s

“
SR
e
.|
k.
he-
v
'
» _‘:
ne

6800
BuUS 8 RITE DATA
—— w
ADDRESS 7= SWITCHES
- WRITE
DATA PIA Opususurton
CONTROL 8] o | 0 | FUNCTION COMMAND
4 | U | HEX DISPLAY
— TR READ ADDRESS
7= SWITCHES
PIA
_8 . [[~ |READ DATA
7771LL | Y | HEX DISPLAY
s WRITE ADORESS
7 SWITCHES
PIA
;E ;et:: 98 DISCRETE STATUS
‘ S8 Leps
BUFFER
PS
TO ICA

Figure 11 FP/ICA Cord Block Diagram

20

..........
...........

..................

.........

2.2.5 NIC/TIMER CARD
The Nameplate Interface Controller (NIC) card, residing in the LM,
enables programs running on the LM to communicate with electronic nameplates

via the subsystem information channel bus. This card translates the LM's

>

bus signals into the signals compatible with the SIC bus. Also installed

T

‘.. Rt T
. ottt el .

in the NIC card is the LM's timer circuit which generates an interrupt to
the LM processor every 10 milliseconds. The design of this card is described

in detail in Section 4.3.1 of this document.

Catea

T T
T

2.3 SOFTWARE DESIGN

Software in the Link Module (LM) consists of a real time executive and
several tasks which implement the LM functions. Assembly language is used
since the FORTRAN available for the 6800 system does not support the multi-
tasking capability required. A top-down, modular approach to the software

design has been used throughout. The LM software modules are described in

the sections that follow.

;: 2.3.1 LINK MODULE SOFTWARE DECOMPOSITION

g The Link Module (LM) software is a multitasking system, with task
5) scheduling controlled by a round robin executive. Each;task is a self

- contained unit and performs a well defined function. However, one task may

require the services of another task in order to complete its function.

RT3 S

Intertask control interaction is achieved through calls to the executive.
" Intertask data sharing is implemented through global common variables. The
:3 tasks include an update timer, three handlers, a command interpreter, and
é the non-resident task. These are diagrammed in Figure 12 and listed in
3 Table 2 .
;; "
é
:j\j I o N T S O S

COMMAND
INTER-

PRETER

......

LM FUNCTIO
INTERRUPT
ROUTINE

........
.......................
.................

HANDLER

ROUND ROBIN
EXECUTIVE ﬁ ICA ICA
WITH MATH HANDLER
NON- UPDATE NP
RESIDENT NP
TASK TASK HANDLER .
Figure 12 Executive Interactions
22
e A e T et .4

B

'
.

sr ATV
L
LI

- “.. .l:"l. '1 ‘P ‘,.",. 2

»
s

-_'--n:‘nzt“;‘l. R

LM S

JME s aT.TG T

ORI T S e afe Mo e S ae Sras Sus deon oy v
L R R .

Table 2

RIS AT I A A i on o vt
ENIT N -

LINK MODULE TASKS

Task Name

Task Number

Starting Address

UPDATE (Update time)
ICAHND (ICA handler)
SICHND (SIC handler)

SMHND (SM handler)

CMDITR (Command Interpreter) 4

NRTSK (Non-resident task)

5820
7920
7820
6820
6g20

$49D (usually)

23

CHRNEY N fa oty e -
b L. 1 Y R T - ou .

Y]
I‘.-
[
mag
l‘.‘
- "
Dy
L

W

ve
oy

BEY RO

The Update task works in conjunction with a timer interrupt ser-
vice routine. The timer interrupt routine increments a counter with each
clock tick. When the Update task runs it reads this tick counter, updates
time of day, and decrements each task's delay counters accordingly. When a
task’'s delay count reaches zero, the corresponding task is activated.

The Shared Memory (SM), Interface Configuration Adaptor (ICA),
and Nameplate (NP) handlers perform communication and data transfers with
their respective devices. Each handler also updates its device's status in
Shared Memory. The handlers run as tasks, and are activated by other tasks
through executive requests.

The Command Interpreter task works in conjunction with an LM
function interrupt routine which runs whenever the Link Manager (LMG) sends
a command to the LM via Shared Memory. The interrupt routine checks the
command for validity and flags the Command Interpreter task to execute the
command .

A non-resident task may be loaded and executed in the LM. This
program may be either uploaded from the Nameplate or downloaded from the
LMG. It may be a data I/0, calibration, or subsystem diagnostic. However,
only one non-resident task may be loaded in the LM at any one time. This
task may be started or stopped under LMG control.

Tasks are scheduled for execution under a round robin scheduling
algorithm. Details of the executive and each task are given in the sections

that follow.

2.3.2 REAL-TIME EXECUTIVE
A real-time executive program is used to schedule the execution

of tasks in the Motorola M6800 microprocessor based system. This section

24

£l
‘

’

b
b
o
.
-
v
.."
‘y

LI 4
)

:

Tt
3 PPN
! - NS

Ittt ot i S e o PRT S T—y N WU WL W YO R S S S I T T U U Y T UL N lA‘-'--.—k‘-i~JA‘~'-;

describes the services available in the executive and defines how to use
them. A description of the functional aspects of the program is also given
here.

The executive implements a round robin scheme for task scheduling.
The executive allows for up to 12 tasks to be scheduled, including non-
resident tasks. In this implementation it permits only 1 non-resident task
and includes only 5 predefined resident tasks. The 5 resident tasks are:
the update task, the Shared Memory (SM) handler, the Subsystem Information
Channel (SIC) handler, the Interface Configuration Adaptor (ICA) handler,
and the command interpreter. The non-resident task can be any one of
several data I/0 and diagnostic tasks. This constraint can easily be modi-
fied, if necessary, to include more non-resident tasks.

The Executive program allows each installed task to be in one of
four possible states: dormant, delayed, ready, or running. The task states
are diagrammed in Figure 13 . A running task is the one currently using
the CPU. A task in the ready state is waiting for its turn to be processed.
A delayed task becomes ready when its delay time has elapsed. A dormant
task will not run. A delayed or dormant task may be brought to the ready
state through activation.

Ready tasks are executed in a cyclic manner, the next ready task
in the cycle being given control of the CPU. Once a task has control of
the CPU, it is up to it to voluntarily release the CPU. Therefore, each
task must not be executed continuously if it requires excessive CPU time,
otherwise the system may not maintain a real-time operation.

A running task can call upon the executive to modify the execu-

tion status of another task - (activate, abort, install or remove) in which

25

N Y AT W W N WL TN TS TN T AT T AT S L W T, eI e e e g =, e e
o< - < ATl AN T . X S T - =
ML RS ER S SO . e : o CE

PR R A S AR S ™ T - ..- =™

NEXT TO RUN
RELINQUISH

RUNNING

ACTIVATE
OR

DELAY TIME UP

EXIT

A
w

- b et Bt 2t B =
r--‘[?'.“.'.‘.'.'—,‘ AP
PR RN AT NN A
ORI N e % e B el

A\

ol

g

Figure 13 Transition of States

26

A oa e womal e i e la e et

—r v

= T
Y JRFTESRLEN ~~ reasvret

case the executive temporarily regains control of the CPU, performs the
function, and returns CPU control to the calling task. A running task can
release CPU control by calling upon the executive to perform any of the
following functions ~ relinquish, exit, or delay, in which case the execu-
tive performs the function on the calling task and tramsfers CPU control to

the next ready task in the cycle. To be able tc perform all the above men-

tioned functions, the executive maintains tables containing the start
address, restart address, initial stack pointer, current stack pointer and
initial and current state of task for each installed task.

In addition to task control services, the executive also provides
services to allocate the three device handlers to tasks in need of them.
This ensures that not more than one task is using a particular handler at
any given time. The services are called Shared Memory Request (SMRQ), SIC
Request (SICRQ), and ICA Request (ICARQ).

The executive also furnishes math functions which can be used by

the running task. The functions provided are 16 bit divide, 16 bit multiply,

binary to BCD, BCD to binary, and three special functions pertinent to the
processing required by the subsystems used in this demonstration. The

running task can call upon the executive to perform these functions. Upon

R 0§ RN
.

completion, the executive returns to the calling task with the result.
Thus a total of 1l executive services are provided. The calling

sequence and a brief description of each service is described below.

- .ot g

: 2,3.2.1 Executive Services
There are 11 executive services. Each service can be requested
? through the EXECRQ macro. This macro simplifies the calling sequence of

all the services. The macro is listed and explained in Appendix C, Section 2-B.

27

WA T s Lt e .
e i . m e e e L . .
o A S

. ™ T T U VA R

o

3.

v 4.
2.

-t

0

1 o

()

RN R
. .."l'(’l.l .

LAE % su ot St

T e O
0 St .
- v ae e ae

! -._.', . .',A.. .

it sthenminattdecl oot et o e o 3 a3 2 g o °

The explanation of the executive services is given below.

1. Activate: This service is used by the running task to bring any
other task into the ready state from either the dormant or delayed

states, It has no effect on a task already in the ready state.

Calling sequence: EXECRQ ACTVAT, TASKNO
where TASKNO is the task # of task to be activated
Register usage: A- {0
B - #TASKNO

X - unused

2. Relinquish: This service transfers the running task from the running
state to the ready state. This is one of the ways a task can release
CPU control, and ensures the task's regaining CPU control after one
cycle of the round-robin scheduler, whereupon it can start wherever it

last left off.

Calling sequence: EXECRQ RELQSH
Register usage: A-#1
B - unused

X - unused

3. Exit: This service transfers the running task from the running state
to the dormant state. This also is a way for a task to release CPU
control, but the task runs again only if activated by another task.

Execution of a task that has exited starts from the beginning.
Calling sequence: EXECRQ EXIT

28

PRI Yy

4,

5.

Register usage: A-#2
B - unused

X - unused

Delay: This service transfers a running task to the delayed state.
This is another way for a task to release CPU control. The task will
automatically become ready only when the delay time expires, unless
prematurely activated by another task. When the task runs again it
will start from wherever it last left off. The delay time is determined

by the UPDATE task.
Calling sequence: EXECRQ DELAY, TIME

where TIME is the delay time in seconds if the MSB of the 8 bits = 1

and is the delay time in 10's of milliseconds 1f the MSB of 8 bits = @.

Register usage: A - #3
B - # TIME

X - unused

Abort: The running task can use this service to transfer any other
task from the ready or delayed states to the dormant state. The abort-
ed task will run again when activated, and execution will start from

the beginning.
Calling sequence: EXECRQ ABORT, TASKNO

where TASKNO is the task # of the task to be aborted

Register usage: A~ #4
B ~ #TASKNO

X -~ unused

29

i VT - PRI SN SR YA SN ST a1 m ' momta -~ .

...............

6. Install: The running task can use this service to introduce a
new task into the execution scheduling cycle. At present only one task
can be installed and will be designated as task #5. Thus 1if there is
already a task designated as #5 it will have to be 'removed' before
'installing' a new one. The service returns a status indicating the
absence or presence of a previously installed task.

To install a new task it is necessary to transfer to

the executive the starting address, initial stack pointer and initial

state of the task.

Calling sequence: set up table as follows for task to be in-
stalled.

TABADR ~ Starting address

Initial stack pointer

bytes
Initial state

= o= NN

Return status

. EXECRQ INSTAL, TASKNO, TABADR

where TASKNO is # of the task to be installed (5) and TABADR is the

address of the start of the table set up.

;E{ Register usage: A-#5

i B - #TASKNO

‘@

o C - #TABADR

i; 7. Remove: This service is used by the running task to remove a
iii task from the round-robin cycle. The task will be removed only if it

- is in the delayed or dormant state. If it is in the ready state, the

30

' e e a - Lt e

task will not be removed and a status will be returned indicating that

the particular task was active.

Calling sequence: EXECRQ REMOVE, TASKNO, STSADR

where TASKNO is the # of the task to be removed and STSADR is the ad-

dress where the status will be returned.

Register usage: A - {6
B - {iITASKNO
X -~ {/STSADR

8. ICA Request: The running task can use this service to assume control
of the ICA handler. If the services of the ICA handler have already
been granted to another task the service call returns with a status
saying so. If the handler is successfully allocated to the running
task, the address of the table of parameters to be sent to the handler

is passed to the handler. Then, status saying 'handler allocated' is

returned to the calling task,

T
Ve

AN O S R
-

e
» "% 2 2

Calling sequence: EXECRQ ICARQ, ICAFUN, GROUP, CHANEL, OPTION,

CNSORC, NUMBYT, BUFADR, UFTADR

where UFTADR is the address where the parameter table is to be set up.

Ssrrrr
.

A detailed description of other parameters will be found in the ICA

handler section.

seTa av Mg ¥
e A

Register usage: A - #7

B - unused

SV Y

X - {#UFT addr.

31

. . . L O
N N o . . . L e s
. o e . PP S Y AP AP AR S | oY > an

9.
10.
:":
D 11.

SIC Request: The running task can use this service to assume control

of the SIC handler. This service functions exactly like the ICA re-

quest service.

Calling sequence: EXECRQ SICRQ, NPID, SICFUN, BUFADR, BUFSIZ, UFTADR

where UFTADR is the starting address of the table of parameters. For
a description of other parameters please refer to the SIC handler

section.

Register usage: A - 8
B - unused

X - {f{UFTADR

SM Request: The running task can use this service to assume control

of the shared memory handler. This service functions exactly like the

ICA request service.

Calling sequence: EXECRQ SMRQ, SMFUN, BUFADR, BUFSIZ, UFTADR

where UFTADR is the starting address of the table of parameters. For

a description of other parameters please refer to the SM handler section.

Register usage: A- {9
B - unused

X - #UFTADR

Math: The running task can use this service to perform any one

of sev2n mathematical functions. The task must provide the arguments
in the calling sequence. The executive returns to the calling task

32

with the result of the operation in the address specified by the call-

ing task.

General calling sequence:

EXECRQ MATH, function, ADROP1, ADROP2, ADROP3, ADROP4, RESULT

where function is any one of:

I

DMULT - Double multiply {8 bit operands, 16 bit result)
DDIV - Double divide (16 bit operands, 16 bit result)
BINBCD - Binary to BCD (16 bit binary to 5 BCD digits)

BCDBIN - BCD to binary (4 BCD digits to 16 bit binary)

CALCA - Calculation of synchro constant 'A'. Arguments required
are three synchro voltages each in 8 bit 2's complement
form.

THETA - Calculation of synchro angle '6'., Arguments required are

three synchro voltages each in 8 bit 2's complement form
and value of 'A'.

VOUTS - Calculation of three synchro output voltages in 8 bit 2's
complement form. Arguments required are '6' and 'A’.

ADROPn is address of operand n

and RESULT is address for the result.

Calling sequences according to functions:

55 EXECRQ MATH,DMULT ,addr. of multiplicand,addr. of multiplier,,,RESULT

t:j EXECRQ MATH,DDIV,addr. of dividend,addr. of divisor,,,RESULT

4 EXECRQ MATH,BCDBIN,addr. of BCD,,,,RESULT

N EXECRQ MATH,BINBCD,addr. of binary,,,,RESULT

EXECRQ MATH,CALCA,addr. of V1,addr. of V2,addr. of V3,,RESULT

EXECRQ MATH,THETA,addr. of V1,addr. of V2,addr. of V3,addr. of A,RESULT
o, EXECRQ MATH,VOUTS,addr. of ©,addr. of A,,,RESULT

CRCLIRAR ¥ 2O R

33

P P e s e e

- Se o T e te Te TRl T e e e Tt Ve e LT e T T e T e

2.3.2.2 Operation

To be able to function properly, the executive needs to keep track
of three parameters for each task scheduled for execution. It must know the
state (active/inactive) of the task, the address at which the task will re-
Ei} sume execution, and the value of the stack pointer when the task resumes

execution. All these parameters may vary during the course of execution of

a task, but initially - before the task starts its first execution - they
will always have a fixed value chosen during system generation. So the
initial values of these parameters are stored in ROM and during its initial-

ization the executive copies these parameters into RAM. From thereon, the

4

executive examines and/or modifies these parameters in RAM during context

i TNt
et
2%
Lt

v
L)
o

switching.

1k wk
1,0,

The executive also needs to know the number of tasks installed.
This number is stored in a variable called NTASKS, which varies due to the
'installation' or 'removal' of the nonresident task. The variable is ini-
tialized by the executive during its initialization. Since in this appli-
cation there are 5 resident tasks and no initially installed nonresident
task, this variable is first set to 5.

Thus we see that during its init{alization the execu:ive copies
parameters from ROM into RAM and sets-up the number of tasks. It also

allows the 5 resident tasks to go through their own initialization. All

i
3

this is done on power-up.

Once this is over, the scheduler part of the executive takes over.

V
X

)
2T 1‘

b
'

It determines which task should get control of the CPU by examining the

3
(O S]

Lk 2k Tt
DY M

task status of each task. The first task it comes across which is in the

1

active state receives CPU control. Before transferring control, the

—a i~
+ 4

L)

34

Y o

R
s s

° F P VR UL I PR R C. s .
° AL R A R A R T L s ' . IR e -
itsnineninsyietininteiesmiamafon el & danulihadibiasiiomiie PRI, SR S ! L

,

.

RS ¥ SRV

TN

scheduler gets the value of the stack pointer and the address where the task
will begin execution (both from RAM). It then sets up the stack pointer and

jumps to the start address obtained from RAM.

Whenever a task wants to avail itself of the executive's services, it will

make a call to the executive - through the EXECRQ macro - at which point the
service dispatcher part of the executive will take over. The service dis-
patcher will examine the contents of register A and will jump to the appro-
priate service. The particular service will be performed and then one of
two things will take place. If the service is either relinquish, delay or
exit, control of the CPU will go to the scheduler so that the next active
task may be scheduled for execution. On the other hand if the call is for
a service other than the three mentioned, the executive will return control
to the calling task.

The architecture of the executive is portrayed in Figure 14. A
list of routines used by the executive and their respective functiomns, is

presented in Table 3.

2.3.2.3 Parameters and Variables

The executive requires certain parameters and maintains various
variables (some of which are global) to enable its functioning. These vari-
ables give a fair indication of the state of the executive and the resident
and nonresident tasks, and their examination is a useful debugging aid. A
brief explanation of the most significant parameters and variables will now

be presented.

Parameters
The task parametors that are copied from ROM into RAM during the exe-

35

PR et .
PO I S Y . UM

AU v e |
N T . Tt

S9DTAISS pUB IATINDIXF awyl-Tedy a9yl %1 2an3y4

dn-¥aMad ¥
NO C
NOILYZ ITYUIN] _
¥INNTIHG [
{
| ,‘
(
— ¥Svl PNITIVO “
ol NUNLIY

O

™
ﬂ ¥ 3] B
MLV DANE BuS DEvYO1 IAOMIY NVISN| JLuogy Tgﬁl Lix3d AViIZ& ALYAILD
i
"
_ a
Y3IHOLVdSIa

FI2IAUSES

ASYW DNIMYD]
wao¥4

bt A i e B S A A N A L B L e e A T " -—._—..—-*7
i

3 Table 3
;7 PROGRAMS AND THEIR FUNCTIONS
' PROGRAM NAME DESCRIPTION
EXEC Main program
ACTVT Service routine for ACTIVATE function
: ABORT Service routine for ABORT function
f DELAY Service routine for DELAY function)
E EXIT Service routine for EXIT function
- RELQSH Service routine for RELINQUISH function
- . INSTAL Service routine for INSTALL function
‘ REMOVE Service routine for REMOVE function
; ICARQ Service routine for ICA handler allocation
- NPRQ Service routine for SIC handler allocation E
5 SMRQ Service routine for SM handler allocation ;
MATH Service routine for MATH operations |
BLDADR Adds the contents of Reg. A to Reg. X §
CLRACT,CLRACI Clears the active bit of task status word |
2 GETSTS Gets the status word for a task i
~ GETADR Performs the operation: Reg(X)=2. Reg(A)+Reg(X) :
f GSTADR Transfers task start address to restart address ;
{ ADJSTK Adjusts task stack pointer to its initial position
COPY2B Copies two bytes of data |
i INITIA Routine which initializes the EXEC and each task ;
: XFER Subroutine that transfers a block of N bytes from loc. 1 :
to loc. 2
¢ RESTOR Copies start addr. + initial SP. for nonresident task
DMULT Does a double multiply
T: " DDIV Does a double divide
55 BCDBIN Converts 4 BCD's to 2 byte binary
BINBCD Converts 2 byte binary to 5 BCD's
CALCA Calculates 'A' from synchro voltages
THETA Calculates O from synchro voltages and 'A’
i VOUTS Calculates synchro output voltages from § and ‘A’
s SERCH Binary search routine
COSINE Determines Cos 0

37

~Y

O]
Coa

1

KRR P TNO R B VLR

cutives initialization are the following:

STAADR (Task starting address array) - Two bytes for each resident task

giving the address where the task first starts execution after initialization.

STKROM (Task stack pointer array) - Two bytes for each resident task

containing the initial value of the stack pointer for the task.

INIZST (Task initial status array) - One byte for each resident task

specifying the initial state of the task at system start-up.

Global Variables

The following variables are used by the executive:

TSKSTS (Task status array) - Initially copied from INIZST. One byte
for each task indicating if the task is active ($8#) or not ($gg). Also
accessed by the update task. Upon expiration of the delay time of a delayed
task, the update task changes the task's status from inactive to active.

The executive examines this array for scheduling of tasks.

DLYTIM (Task delay times) - One byte for each task indicating the de-
lay time of the corresponding task. The most significant bit shows the
delay time is in seconds (1) or 10's of milliseconds (@#). The other 7 bits
are a delay unit count, The executive initializes the delay time as re~

quested by the calling task and the update task modifies it as time ticks.

MATHVAR (P,Q,R,TABLE) - P, Q and R are 2 bytes each and TABLE is 6
bytes. The math routines in the executive ntilize these variables during
computation. These are initialized - with the operands and address of the
result - by the macro whenever a task requests the math gervice of the

executive.

- 38

g

-
v

TeleT X FTE S
.

& FhTaT

............

......

UFTICA (UFT* pointer for ICA handler) - Two bytes containing the 16 bit
address of the start of the UFT table holding parameters to be sent to the
ICA handler. This is initialized by the ICA handler during its initializa-

tion.

UFTSM (UFT pointer for SM handler) - Two bytes containing the 16 bit
address of the start of the UFT table holding the parameters to be sent to
the SM handler. This is initialized by the SM handler during its initial-

ization.

UFINP (UFT pointer for SIC handler) - Two bytes containing the 16 bit
address of the start of the UFT table holding the parameters to be sent to
the SIC handler. This is initialized by the SIC handler during the

initialization.

INSFLG ('Instzlled' flag) - One byte indicating whether a nonresident
task is installed ($f1) or not ($¢@). It is also examined by the command

interpreter.

A l1list of global variables appears in Table 4, The interactions of

the executive with other tasks is portrayed in Figure 15.

Other Variables

RSTADR (Task restart address array) - This is initially copied from

STAADR. It has two words for each task containing the address at which the

corresponding task next resv.rs execution.

*
User File Table

39

*(¥) psuaniax aq

(A19V1

01 ST IINS3a1 213ym ssaappe pue (FIEVI‘D‘d) spue ‘4d¢a)
-13do ay3 Buyproy sauyInox HIVW £q posn saTqeTIR) fipuiq 21 yiog AVAHIVH
*dST Aq pa3jedyp
~ul (@) 30u 10 (T) POTTEISUT Se] JUapTsSaIuUOU I 8e13 319-1 T Yy3oq 9 LISNI
*13TpueRy
WS @43 o3l ssaippe 1in Burssed 1oy sajhq 7 Laeuyrq z no WSLin
* I9TpuRy
OIS @43 o3 ssaappe 1in Juyssed 103 s93Lq 7 L1eutq Z ang dNLiIn
a9y puey
VOI 3y3 o3 ssaippe Lin BuTrssed 103 sa34q 7 Laeurq 4 np VOl1Lin
*3unod 3Fun
Aerap e ai1e s11q ; 19430 ‘(@) su jo 8,0T 10 (1)
spuodes uy awil Aera2p sSmoys ITq JuUEOTITusEs 3som
4l °jS®] YOEd 103 piIom 3uQ “‘13wy3l Keyap jyseyl | Kieuyq 179~/ ra s Ing WIIX1a
*(§) 3ou 10 (T)4peaz ST jysel e smoys 31q Surpea
‘jSe] YOoB3 103J PIOM 3UQ ‘pPIOM SNIBIS YSB] 3e13 I19-T rA | yaog SISASL
NOIL4I¥ISId 4dAL 4zZ1s8 Ino/N1 INVN

SITAVINVA NOWWOD TVEOTO 40 LSIT

% 91qeg

40

la_ & s s

g T w T e YT, YT w v YT e w TV W TN T - PRI A Ju L utn et ent Mt s R R A M TR A S

INTERRUPT
ROUTING

NON -
RESIDENT

sMm
HANDLES

TAsk

MATHVAR UFTsM

COMMAND
INTER~
PRETER

ICA

C
INSFLG EXECUTIVE] HANDLER

DLYTIM OFTNP
TSKSTS

Sic
HANDLER

UPDATE

Figure 15 Interaction of the Executive

41

R L PR TO UL ST LT e T N . R L e S a e e ..‘
DI A S A S e T T N ST T
PP s P NP AR I NP PO S PSP R LS PP TS . Y RO,

Y

P
PPN

LY S S R P

STKRAM (Task stack pointer array) - This is initially copied from STKROM,
It has two words for each task containing the current value of the stack

pointer for the task.

RSTIMP - Two words for the nonresident task containing the address at
which it will first start execution. This is analogous to STAADR for resi-~

dent tasks.

STKTMP - Two words for the nonresident task containing the initial value

of its stack pointer. This is analogous to STKROM for resident tasks.

NTASKS - One byte indicating the number of tasks in the round~robin,
including nonresident tasks if any. This is initialized to 5 and changed to

6 if a nonresident task is installed.

There are other variables used by the executive but since their descrip-
tion does not in any way shed light upon the functioning of the executive,

their explanation has been omitted.

2.3.3 UPDATE TASK

The real-time executive used in this system requires a task to
keep track of time. The executive also needs the facility of updating the
status of delayed tasks. The update task ostensibly fulfills these require-
ments, with the help of some hardware and an interrupt routine.

The update task maintains time in Julian day, hours, minutes, and
seconds. It decrements the delay times in the delay-time array of the

executive. It also maintains 6 independent timers for the handlers.

42

T
' 4
E)
4
X
' 4
b
1
I
<
‘
[
4
1
)
-
L
.
.

e 3u St
o~ S S
.

9 4t

it

A i I

o

2.3.3.1 Operation

-

In order for it to count time, the update task must have access

\

to a hardware clock. Each clock pulse causes an interrupt which is serviced

",
.
[
a

by an interrupt routine called CLOCK. The interrupt routine accumulates the
number of pulses received from a 100 Hz clock.

The update task is scheduled for execution in the same way as
other tasks. Each time the update task runs, it checks to see if any pulses
have been accumulated by the interrupt routine. It decrements the delay
times of all delayed tasks by the amount of time the number of pulses add
up to. It checks the resulting delay time, and if the time has expired it
changes the state of the corresponding task from 'delayed’ to 'ready’.
Figure 16 shows the structure of the update task.

Next, the update task decrements the 6 independent timers used
by the handlers. These timers are in units of 10 milliseconds and thus
allow a maximum time count of 2.55 seconds.

Lastly, the update task renews the system time. The time - in
days, hours, minutes, and seconds - is maintained in BCD data format.

The task then relinquishes control of the CPU and awaits for its
turn in the next scheduling cycle. In the next cycle it goes through the
above mentioned steps in the same fashion.

Since the update task runs during every scheduling cycle, it is
used to call upon a subroutine which refreshes the front-panel of the
system,

A detailed description of the update task 1s presented in Appendix

C, Section 2-C.

43

START COMMENTS

INITIALIZE Invoked by
VARIABLES) ‘
AND execubive alu.nnﬂ
HARDWARE T .
ks thatializakion. .
\
RETURN

(START)
/ vepFp__\

UPPATE
FRONT
PANEL

b

D& TERMINE
ACCUMULATED
PuULSES

!

DECREMENT
DELAY
TIMES

N

CHANGE
TASK STATES

y

DECREMENT
INDEPENDENT
‘TIMERS

v

RENEW
sSygTeEMm TIME

¥

rRELlqus»

4

R f
PP AR T R R A

k4

of 2

™
PR

Y

&
»

el

e

rEy oW
(A
I N

0y

SR P e

m

. Figure 16 Update Task Structure
L

: 44
r-
'r:j

P D ST P SU N T L I PG A P

12

AN sl
A

1T

~ W ALY Pw R
PR R
PO LS

o Aty

»
»
b
»

. WL W w w0 -
= e T N Tl B . R R R Pt PR R P 4 i AR N Do aruie s PO A PR UL s e LS Budse enele Juee et sute o

...........

2.3.3.2 Interactions with other Tasks

The update task has interations with the executive, the handlers,
the interrupt service routine, the command interpreter, and the nonresident
tasks. These interactions are shown in Figure 17 along with the names of
the variables through which they take place. For a detailed description of

these variables, refer to Appendix C, Section 2-C.

2.3.4 ICA HANDLER

The ICA handler is one of the resident tasks in the link module
and is designated as task #1. It is a software program which provides an
interface between a task wanting to use thc ICA and the ICA itself. It
translates general commands from a task, into speci.ic commands recognizable
by the ICA. It also provides a means of transfer of data and status between
a task and the ICA, taking care of all the details involved with this trans-
fer. For a task, this implies a simplified means of interacting with the
ICA.

The handler communicates with the ICA through the ICA buffers. A
map of these buffers is given in Figure 18. As shown in this figure, some
of these buffers are used to configure the ICA, and others are used for

transferring data.

2.3.4.1 Handler Functions

The ICA handler has 3 basic functions:

1. Configure
2, Control

3. Data transfer

45

sSM
HANDLER
NTICK R .
TIMER1L v
TIME TIMER 2.
COMMAND S— ICA
INTER- UPDATE [TIMERS HANDLER
PRETER TiME TIMERG
DLYTIM TIMER?2
| TSKSTS TIMER L
- [
-
:.. Sic
L; EXECUTIVE) HANDLER
n []
rawmd
o
-
;. .
E.

T

Figure 17 Update Task Interactions

T

46

« v
YN RG
PRy

T_‘f"f"[a' e

DS . . . -
R T e T e e e . I P R . .
B e et s famand P A AP PP S i

s
b
o
:
i
1
4
4
2
r
\
)
;

5
{
DATA BUFFERS
= Am,(gg wm/ovt ch. g
. ADDRESS Analog n/out ch.l
‘\ (HEX) Analog /ot ch2
N o aggp Anale . .a/wtnu:.?.a
l a
& aag GROUP A Peu"tit P?nput
S a81p unused PIA contreol
-,,. asi 7 GROUP B gevial t/out
;;;: SSDA control
3 unused
q84o CONFIGURATION BUFFER
asus GROUP A s
aesy unused Topology word ¥
asse GROUP B Topelegy wovrd {
8o unused high level voltage
low levet wvoltage
3', threshold wveltage
:‘_i Sercal contrel
;:,; PiA contrel
b,
Figure 18 Memory Map of ICA Buffers

k¥ - 7N

47

ettt
e)

YEL TSN

ey \x

A4 K

~1w
A
at 'l 2

.‘ .i ‘l .I
Loy

T

I

Eﬁ*“*‘
’\

...............

A brief description of each of these is given below.

Configure: This function has two options - read and write. If the
option is 'Read', the handler transfers the existing configuration to a
specified buffer address. If the option is 'Write', the handler transfers
the desired configuration from a specified address to the ICA buffers.

The ICA has several configurations, each of which defines a particular -
combination of states of its hardware. Any configuration consists of 7
bytes of data. The handler uses this data to configure the ICA. A list of f

configurations is given in Table 5.

Control: This function has 3 options - online, offline and reset.
'Online' enables outputs from the ICA, 'Offline' disabled outputs from the

ICA. 'Reset' disables both inputs and outputs.

Data Transfer: This function has 2 options - input and output. The

data must be transferred to or from the handler, in a buffer. The handler
assumes that the data being transferred is compatible with the configuration
of the ICA. However, if the option is input and the ICA is configured for

output or vice-versa, the handler detects the error,

2.3.4.2 Calling Sequences
The services of the handler must be requested through the execu-

tive. The request to the executive is made through the following macro call:
EXECRQ ICARQ, ICAFUN, GROUP, CHANEL, OPTION, CNSORC, NUMBYT, BUFADR, UFTADR

EXECRQ is a macro defined to form a table of all these parameters. The table
will start at the UFT address specified and will be set up as shown in Fig-

ure 19.

48

......................

Table 5
ICA CONFIGURATIONS

AINAC S.E.

AINAC DIFF.

AINDC S.E.

AINDC DIFF.

AOUTAC S.E.

AOUTAC DIFF,

AOUTDC

AOUTDC

SYNIN

SYNOUT

SINREF

SINFLG

SOUT

DINREF

DINREF

DINMOM

DINMOM

Tl T T

DOUT

e P I

49

R - O

~~~~~

AR




UFTADR >

RETURN STATUS

SOuRce (LMG/NP)

FUNCTION

GROUP

CHANNEL

OPTION

NUMBER OF BYTES

BUFFER
ADDRESS

Figure 19 Parameter Table Set-up by Macro

50




-

i
4
.
=

R X

ST

A TOu

e 3T T N W W T e - o —

If the executive grants the request for the handler, then it saves

the pointer to this table - the UFT address. When the ICA handler rums the

next time, it retrieves the UFT address and parameters, and performs the

function as specified by the parameters.

An explanation of the parameters in the calling sequence is given

below.

ICAFUN -

GROUP -

OPTION -

CNSORC -

......................

This parameter specifies the function. It could be

CONFIG, CONTRL, or DATATR.

This 1s used only when ICAFUN is DATATR, and when the
data being transferred is analog. It specifies the chan-

nel and could be 1, 2, 3, 4, or 5 (for all channels).

Every function has certain options. When ICAFUN is
CONFIG, possible options are READ and WRITE and are used,
respectively, to read or write the configuration. When
ICAFUN 1s CONTRL the possible options are RESET, ONLINE,
and OFFLINE. RESET resets the ICA, ONLINE enables out-
puts, and OFFLINE disables them.

When ICAFUN is DATATIR the possible options are INPUT
and OUTPUT and are used, respectively, to input and out-

put data.

This parameter defines the source of the configuration.
If the configuration is from the LMG this parameter is

'@’ and 1f the configuration is from the nameplate this

parameter is 'l',

51




NUMBYT - This parameter holds the number of bytes either to be
transferred or that have been transferred. It is not

necessary to supply the number of bytes to be transferred

since in all cases this is known apriori. However, this
parameter does hold the number of bytes successfully
transferred, after the transfer takes place. If this
parameter 1s zero it indicates that the transfer was

unsuccessful.

BUFADR - This parameter holds the address of the 7 bytes of con-
figuration that will be used if ICAFUN is CONFIG and the
option is WRITE. For the same function if the option is
READ, this parameter holds the address of the buffer into
which the configuration will be read.

If ICAFUN is DATATR then BUFADR holds the address
of the buffer to or from where the data will be trans-

ferred, depending on the OPTION.

If ICAFUN is CONTRL, this parameter is not used.

s e Ny

%‘ In the table of parameters as shown in Figure 19, the first

; entry is 'Return status'. This holds the status of the operation as return-
Ei ed by the handler. The various status codes and their meaning is given in
; Table 6.

2.3.4.3 ICA Handler Design

i The ICA handler has an initialization section which is invoked by
3 the executive during the executive's initialization. During initialization

the handler sets-up the Peripheral Interface Adapters (PIA) and the syn-

52

TSR G .




T N
K|

“-

vl

.'jf

f?;

P._.

}‘ -

v T TR eI W TR T WL T T T T e W

Table 6
ICA HANDLER STATUS CODES

Status Description

2 Success

1 Handler allocated.

2 Handler not allocated.

4 Function in progress.
-1 Invalid function.
=2 Group not configured.
-3 Parity error during serial input.
-4 Invalid configuration.
-5 No data received during serial input.
-6 Parity error during serial output.
-7 Data not transmit during serial output.
-8 Invalid I/0 request: group set for synchro output,.
-9 Invalid I/0 request: group set for synchro input.
-10 Invalid I/0 request: group set for analog output.
-11 Invalid I/0 request: group set for analog input.
-12 Invalid I/0 request: group set for discrete output.
-13 Invalid 1/0 request: group set for discrete input.
-14 Invalid I/0 request: group set for serial output.
-15 Invalid I/0 request: group set for serial input.

53




R
Y
-
"

v‘li‘.
e
)

-
-
-
‘

o

&
R

J Sate

¥y .

2

(.n
]

."".'Z]‘ -
RS I
2ty 19,

b,

-
.

C I A araC R Sieat e ow N A DS sran tees o e 0o

chronous serial data adapters (SSDA) which form part of the ICA buffers.
The handler initializes all its variables and sets the ICA in the reset
state. It also initializes the UFT pointer, UFTICA, to a parameter table
which will require the handler to perform the update function. The update
function, though not a 'full-fledged' function of the handler, updates the
ICA status in shared memory.

Once the initialization is over, the handler runs periodically
every one second. Whenever another task requests the handler's services
this period is disrupted since the handler immediately attends to the re-
quest. Each time the handler runs, it first gets the parameter table
pointer from UFTICA. From the parameter table it gets the function and
performs the required steps corresponding to that function.

After performing any function, the handler sets UFTICA to point
to the parameter table holding the update function. Thus, until the handler
is requested by another task it periodically performs the update function.
This structure of the handler is depicted in Figure 20,

The three major functions of the handler are implemented as sub-
routines. Each of these subroutines, in turn, call upon a host of other
subroutines at the secondary level. The subroutines in the handler and
their hierarchy are shown in Figure 21. For a detailed description of
these subroutines please refer to Appendix C, Section 2-D.

The handler has interactions with the executive through UFTICA,
with the update task through the independent timers TIMER5 and TIMER6, and
with shared memory through ICASTS. These interactions are shown in Figures
15 , 17, and the shared memory map in Figure 28, respectively. For
further details about these global variables please refer to Appendix ¢,

Section 2-D.
54

L BT NPT PV WU N ) PP

S ¥




INITIALIZATION

(SsTART >

CoNFiG
CONFIG

GET
UFT POINTER

Y

GET FuNcTiOoN

DATATR UPDATE

ATR

1

UPDATE SM

!

I;T\MERS':LSG.C]
<————— |

UFTICA=UPDATE

EE LAY 4isec

Figure 20 ICA Handler Structure

55

COMMENTS

I’\Vol{f_J b_‘)
executive d:.m‘v\j
tks inthalizabion

From ey ecutives

j lobal common

Frem parameter
tohle Fa

Update SM
e,vid:!' 1second

P?_r,form updati
until service
qu,uesl:u( bj
o task.




rrrrrrr g

MAN Tl e LeveL Conbose
ICAH1 XFER
CONFIG VALCHK ReTsTS
PlASET SimseT | BurseT Iner
SYNSET
FLGSET
TypcHK
CoNTRL
DATATR SeRIN SiMsIN
RxDATA
START
SERSTP
DsSenN
ANALIN
SYNcaIN
SeErRouT | Sosim
XM InsT
SERSTP
DscouT
;i,: ANAOUT
SvynouTt
‘ Figure 21 ICA Handler Subroutines and their Hierarchy
: s
'

T T am L a e .., -
D A O
- S A




i

B -

4

LEFS T YV

2,3.5 SIC HANDLER

The SIC handler provides tasks running in the link module with a
simple to use interface to the subsystem information chanmnel (SIC). The
handler allows a calling task to make a single call to request a relatively
complex function be performed. The SIC handler will translate a request
into several commands which are sent to an electronic nameplate to perform
the function requested. All the detailed timing and control required for

communication with electronic nameplates are performed by the handler.

2.3.5.1 SIC Handler Functions
This section describes the functions of the SIC handler. Table

7 lists all SIC handler functions implemented.

2.3.5.1.1 SIC Status in Shared Memory
The SIC handler periodically updates a status byte in shared
memory. This byte reflects the status of the subsystem information channel

as shown in Figure 22. The handler updates this byte every 0.5 seconds.

2.3.5.1.2 SIC Initialization

Any time a nameplate is added to or removed from the SIC, a re-
quest for initialization must be made to the handler. This 1s accomplished
through the SIC handler function SICINT. This function request causes the
handler to reset the nameplate, to run the nameplate's diagnostic program,
and to build the SIC status table shown in Figure 23. This initialization
procedure is the only way bits 7 and 6 (SIC hardware failure and SIC con-
figuration changed) of the SIC status byte in shared memory may be reset

after a SIC status condition has caused them to be set.

57

WV SR S S T L




e i il S e I R e
L RN A AL I I ACAASRAAD . SASRCRICI e :
LR SRR NN - " K

................
L2 etats A R Y - LA
.

b7 b6 b5 b4 b3 b2 bl bg

HWE | CFC | NPP | INT | RCF P P RST

HWE: SIC hardware failure (master NP or NIC), used
as No-Go/Go bit.

CFC: SIC configuration changed since initialization
(SIC needs to be reinitialized).

NPP: At least one NP is present.
INT: SIC has been initialized.

RCF: SIC maintenance record area on the master NP
is full.

RST: SIC in reset state.

(X

e
B
[ A

Figure 22  SIC Status Byte in Shared Memory

3

3

s

4 ¢
¥

b 58




NIC Status
Number of NPs Present
1st NP's ID
1st NP's Diagnostic _
Result ¥
2nd NP's ID
2nd NP's Diagnostic
Result
’J’ Py —-L
T . T
-t '
y Last NP's ID
h Last NP's Diagnostic N
h r Result
'
'
v *
" See Section 4 for format of these
- diagnostic result bytes.
[of -
o
?
% Figure 23 SIC Status Table
i
: 59
p
R T S e
- i ata e T e e T L N L L D




o
ﬁ

N
L
>
.
» ',
L,
l.'_ B
[T
.o

S

LA B

we

=
PR
ST LA

R Y M

s s
D
P T

1

T . S e v s Aoes. toen 1o anr

2.3.5.1.3 Load Functions

The load functions (LDDIR,LDCFN,LDCNV, and DMPWRT) cause different
areas of a nameplate's memory to be read and stored in the area specified
by the calling task. The type of data each function causes to be loaded is

indicated in Table 7.

2.3.5.1.4 Maintenance Record Functions

A task running in the LM may write maintenance records regarding
the subsystem's performance into the read/write area of a nameplate's mem~
ory. The SIC handler function WRTREC is used to perform this function. A
maximum of 14 bytes (one record) may be written at a time. The format of a
maintenance record is described in Section 4.1.3. Records are written
sequentially in the nameplate's read/write memory.

The RDREC command is used to read a previously written record. A
record pointer is used to specify the first record to be read. The function
RDREC causes the specified number of records to be read starting with the
record pointed to by the record pointer. The function RECPOS is used to
move the record pointer to a desired record. There are four sub-functions
(POSFUN) of the function RECPOS used for this pointer as indicated in Table
7.

The records may also be read by the load function, DMPWRT, which
reads all 16 records (256 bytes total) from the nameplate at one time.

The function ERAWRT simulates the erasure of the nameplate's read/write
memory. The record pointer is set to point to the first record as a result

of this erase function.

60




LD

KRN

LY I
et

o Pkl
K3

L
2t
LR R R i)

S AL
¥ A0S

Table 7
SIC HANDLER FUNCTIONS
CODE
FUNCTION (SICFUN) DESCRIPTION
UPDTSM V] Update SIC status in shared memory.
SICINT 1 Initialize SIC.
LDDIR 2 Load nameplate's directory.
LDCFN 3 Load ICA configuration table from the
nameplate.
LDCNV 4 Load the subsystem's data I/0 conver-
sion program from the nameplate.
5 Reserved.
6 Reserved.,
WRTREC 7 Write a record into the nameplate.
DMPWRT 8 Load all of the nameplate's read/writq
: memory (record area).
ERAWRT 9 Simulate erasure of the nameplate's
' read/write memory.
RECPOS 192 Positions the record pointer to a

particular record. The type of posi-
tioning (POSFUN) which may be re-
quested are:

e EDD: (POSFUN=1) end of data;
positions record pointer to
the first record following
the end of written records
(i.e. the first empty record)|
Note: this is where the
record pointer is set after
a record has just been
written. The record pointer
value is ignored in writing
records. Records are always
written sequentially.

61




i

L A
.

RSP 1)

v
B PR GATAN]

oo
IR YR

$oa
s
S

348
D

B

Table 7 (Continued)

SIC HANDLER FUNCTIONS

FUNCTION

CODE
(SICFUN)

DESCRIPTION

RDREC

11

e BOD: (POSFUN=2) beginning of data;
positions the record pointer
to the first record in the
read/write memory.

e BACKREC: (POSFUN=3) backup the re-
cord pointer the specified
number of records.

e FUDREL: (POSFUN=4) advance the re-
cord pointer the specified
number of records.

Read the specified number of records
(NUMREC) from the nameplate starting
at the record denoted by the record

pointer.

62




.................. SR R T T T R T T e e T N W T, W W e W W, W e o
S S T T Y T T T R T T N e T AT A TR Y E T R T TR e — % e~
____________ . e e T A

...... - -

2.3.5.2 SIC Handler Calling Sequence

A call to this handler by a task requesting a function is made by
a request to the executive. The executive builds a user file table (UFT),
consisting of the parameters specified by the calling task, and passes it
to the SIC handler. Then the executive sets the SIC handler to a ready
state, eliminating any remaining delay the handler had, so that the handler
will run when its turn in the round robin schedule is reached. Note, how-
ever, that control is returned immediately to the calling task after the
SIC handler is set ready. Thus the calling task must relinquish control to
allow the handler to run.

The format of a request to the executive for this SIC handler is:
EXECRQ SICRQ, NPID, SICFUN, BUFADR, BUFSIZ, UFTADR

where

EXECRQ: indicates a request of the executive is required
SICRQ : indicates the SIC handler is requested

NPID : specifies which nameplate is desired to perform function
(must always equal zero in this implementation)

SICFUN: specifies what function is requested of the SIC handler

BUFADR: specifies the starting wemory address of the memory area
(or POSFUN) 1in the link module that data is to be loaded into (load
functions) or copied out of (write record function). On
a record positioning function this parameter becomes the
type of record poeitioning required (POSFUN).

CRRL B % Aled Ly Oitied o ) iy

Sl

Bl BN QLA RN

BUFS1Z: specifies the maximum size of the memory area denoted by
(or NUMREC) #BUFADR. On a record positioning function this parameter
becomes the number of records to be processed. On the
completion of any function this parameter is changed to
represent the number of bytes actually transferred.

TrermamEm v.m A ¥ 4

UFTADR: specifies the memory area where the UFT is to be stored.
The area size must be at least 8 bytes.

63




Figure 24 shows the UFT built as a result of this request.
Any time after a request is made to this handler, the calling task
may examine the first word of the UFT to obtain the present status of the

request. The request status codes are given in Table 8.

2.3.5.3 SIC Handler Design

Figure 25 shows the flowchart for the main routine of the SIC
handler task SICHND. The SIC hardware and SIC internal variables are ini-
tialized through a subroutine, HNDINT, called by the executive as part of
the link module power-up initializations. After this the SIC handler only
executes the loop portion of the program shown in Figure 25.

When another task running in the LM requests of the executive an
SIC handler function, the executive sets up an SIC handler user file table
(UFT) for that request. The executive modifies the global variable SICUFT
to point to this UFT. The executive clears any delay the SIC handler may
have and sets the task status to ready so that it will run when its turn in
the round robin schedule comes up.

When the SIC handler starts execution it calls the subroutine
FUNEXE to obtain and decode the function requested out of the UFT and then
call the proper function subroutine to execute the requested function. Each
function has its own function subroutine. These subroutines call lower
level subroutines, each of which perform a special service needed in pro-
cessing the requested function. Table 9 gives an lLierarchical presentation
of the subroutines used in the SIC handler. Once the function request has
been processed the status in the UFT (first byte of UFT) is changed to in-
form the calling task the status of its request. The subroutine FUNEXE

then returns control to the main routine of this handler.

64




e
i
N
bl
v
S
»

4
E:?

.. fm“‘. KA '.. .-- '-- .1.1‘.:',‘. "I"'."‘-

UFTADR

Request Status

Calling Task

NPID

SICFUN

Buffer Start or Position
Address Function

Buffer or Number of

Size Records

Figure 24 Format of SIC Handler's UFT

65

. e e ta tat e e R .
PR R U WAL TR DA LRI Wi

R e e T T . .
P N P A T U e P TR TR A S T R




Table 8

SIC HANDLER REQUEST STATUS CODES

STATUS CODE DESCRIPTION
RQREJ- +2 Request rejected by executive because
this handler is being used by another
task.
BUSY +1 The handler is in the process of exe-
cuting the requested function. .
succ ] Requested function completed success-—
fully.
INVFUN -1 Invalid function requested.
COMERR =2 SIC communication with nameplate in
error,
FUNERR =4 Nameplate error in execution of func-
tion.
INTERR -5 SIC not properly initialized.
INVID -7 Invalid nameplate ID specified.
OVERFL -11 The size of the data requested to be
loaded is larger than the buffer area
specified to receive it.
;, EDWM =12 This status is set when trying to
Ry read, write or move the record point-
o er beyond the end of the nameplate's
5 read/write memory.
- BOWM -13 This status is set when trying to
o move the record pointer before the
i start of the nameplate's read/write .
bl memory.
R
'@
T
2
ﬁ}
i ::- 66

PP P S s o a e e s -'~-"-£




1
1
|

DA M LA
ST
PR

-.
'Y e
HP

AR
S

v
It

DS
Kl I‘l

hacad
- .
.

iT

[ —
LR

Y &F

e,

RS I S LA

Ladmd™ o™ o T T e

2 = A

A S et 3

SICHND

/ FUNEXE \

& SICULUFT )

/ uPbTsm  \

\

\
SICUFT =

LocaL UFT

DELAY
500 msece

COMMENTS

Decode and. execute
function Wstaal

Urclab. sIc skatus
tn shared memory

Local UET fundﬂ‘o’n:
Urdp,ke, shaved memovy

Re,cpues(: executive

ddaj Service -

Figure 25 SIC Handler Task

67




-xarpuey 31dniiajuy ,,oTqQEBITBAR BIEpP I9AT3D21, ® AJTea1 ST XYDIS
¥

,_
.
W.
2 ARTEVL
v 19vaN
oviamd

w oVIANY
| RIXVIE S04y
f. YAVIXN LamMvyd
hw WIWIYM OHYIUM
. NAIAM X b: (1

B WEKQY TIMdRA

) qaavay TVOaT

- qAVISY 9v1aal

X Xqv 14S3d FAVIVA ANDQT

’ *X4OIS M0ASng 4avas IMVIVd NADQT AXANN aNHOIS

. X1DIS AIADAY MHOWYE IXNTAS aTviva 1041

wm WNSAD ands NAKROD 0¥ZTdS oISaId INIOIS WS1adn INIANH
Aw sauginoiqng| ssuginoaqng fsaurinoaqngf ssuginoigqng]saurinoiqng JsaUFIN0IGng |saurinoaqng mammqmmumwl
- T2a97 Yy3z] TeA9T Yyig| 12497 Yig| T2A9T Yiay| T3A97T pag| uoFISUN | TIAST IST JTTED) SAUT]
e -noy uyeR

. XHONVNAIH YATANVH OIS
g 6 °19eL

B R - e e e e P
. S AR R R RN R e e e, e e e . e e - . .o

e bety it neR T T e TN PR , MR, BRI BN . o

P SR AT VAT ¢ O PN e b . 0 a . ) N N (PP RCIRLARY) M SR SRSV - V3PV SR WA S0 U Sl o Sy iy vO-




e Mgl biads Jdaalh Siaafchenat |
PO

The subroutine UPDTSM is then called to check and update the SIC
status byte in shared memory. Then the UFT pointer, SICUFT, is modified to
point to a local UFT containing the function "“update status in shared mem-
ory". The SIC handler then delays 500 milliseconds. If no task has re-
quested an SIC handler function by the time this delay expires, the execu-
tive will activate this handler. The SIC handler will then proceed to
execute the function in this local UFI. The subroutine FUNEXE merely returns
control if it decodes the function "update status in shared memory'". Then
UPDTSM is called to perform this function. This scheme provides for a
periodic update of the status in shared memory even if a handler function
is not requested by a task.

Detailed information on all of the subroutines comprising the SIC

handler is given in Appendix C, Section 2-A.
2.3.6 SHARED MEMORY HANDLER
The Shared Memory Handler (SMHND) runs as a task in the LM under
control of the real-time executive. The three major functions of this
handler are: (1) arbitrate SM buffer control for data transfers, (2) clear
and set various flags, and (3) update the LM status byte in the SM. The
. handler runs at least every 0.5 seconds, since at the end of every run it

issues an executive DELAY request of 0.5 seconds.

This insures that even

if no task activates the shared memory handler, it 1s periodically activated

by the executive to update the LM status byte in SM. This LM status byte

is not updated with every SMHND call but only after a minimum of 0.5 seconds.
The shared memory handler is activated through an executive re-
quest by another task. The reason for this is to relieve the calling task

of the responsibility of needing to know any SM addresses or handshake

69

UL WA S 3 -~

PP AL L T . PR 1 P P ST YN . |



[
[
[
i

A R A I A e e e A P S Ve R S A A

L gie e e

—e
- 4
%y BTN

¥

by

E{; protocols. This is particularly important for nonresident tasks which have
:n no knowledge of any LM addresses or handshakes.

2.3.6.1 SM Handler Functions

Following is a description of each of the ten SMHND functions
listed in Table 10. The various status returns from these functions are
listed in Table 1l.

UPDSTS (Update status) is function number 0. This function is
used to update the LM status byte in SM.

SETSTS (Set status) is function number 1. This function is used
to write the calling task status byte into the LA status byte in SM.

SETFLG (Set flag) is function number 2. This function is used to
set the flag bit in DXSTS byte in SM to indicate a calling task error con-
dition.

CLRFLG (Clear flag) is function number 3. This function 1is used
to clear the flag bit in DXSTS byte in SM.

S1READ (Read S1 (DXSTS)) is function number 4. This function is
used by the calling task to read the DXSTS byte in SM.

SEQGET (Sequential get) is function number 5. This function is
used to get sequential data from SM data buffer which has been loaded by
the LMG.

REFGET (R~freshed get) is function number 6. This function is
used to get refreshed data from SM data buffer which has been loaded by the
LMG.

SEQPUT (Sequential put) is function number 7. This function is
used to put sequential data into SM data buffer for the LMG to read.

REFPUT (Refreshed put) is function number 8. This function is
used to put refreshed data into SM data buffer for the LMG to read.

70

PV ST SO Wiy SR W St P I




Table 10

SMHND FUNCTIONS

@ UPDSTS Update LM status.

1 SETSTS - Set task status.

2 SETFLG - Set flag bit.

3 CLRFLG - Clear flag bit.

4 S1READ - S1 byte read.

5 SEQGET - Sequential data get.
6 REFGET - Refreshed data get.

7 SEQPUT - Sequential data put.

8 REFPUT - Refreshed data put.

.9 FLGINZ - Flags initialization.




.fi Table 11

SMHND STATUS RETURN CODES

‘Qé +1 Data not ready, or pending.
];; [} Success.

-1 Invalid function number.

-2 BUFSIZ <@ or >63.

. -3 BUFSIZ too small (eg ¢ WSC).

-1p SEQPUT: RDY or REQ ¥ @

5 5
v bt

72

o
v
.
e




,Ef
F
:
:
f
|
F

........

FLGINZ (Flags initialization) 1s function number 9. This function

is used to initialize all the data transfer handshake flags.

2.3.6,2 SM Handler Calling Sequence

The shared memory handler is called by another task through an
executive request. The executive builds a UFT table as shown in Figure 27
consisting of the parameters specified by the calling task, and passes it
to the SMHND. The executive sets the SMHND task to the ready state and re-
turns control immediately to the calling task. Thus the calling task must
relinquish CPU control to give the SMHND a chance to run. The calling

sequence is as follows:

label EXECRQ SMRQ,SMFUN, BUFADR, BUFSIZ,UFTADR where:

EXECRQ -~ invokes the executive request macro.
SMRQ - identifies EXECRQ as being for SMHND.
SMFUN - identifies which of the ten functions.

BUFADR - starting address of the user buffer.
BUFSIZ - # of bytes available in user buffer.
UFTADR - user file table containing above information to be pass-
ed to handler. See Figure 27.
Table 11 1ists the request status return codes. The calling
task may obtain the present status of the request by examining the first

byte of the UFT and relinquish CPU control if the request has not completed.

2.3,6.3 SM Handler Design
The general handler architecture is shown in Figure 26. Upon
being called it first checks the validity of the calling parameters. If

valid then a call is made to the particular function subroutine which exe-

73

A A A ata AP P N s LT te
e - - P R . U S T




............
.............................

COMMENTS

V.
VALIDITY CHECKS:
I)VALID FUNCTION NO.7
2)BUFSIZ ¢ TO 63.7

BUFSIZ @ TREATED AS 64.

CH N
oK
Y

GO TO_FUNCTION SUBR.
o[ 1]2]3[4]s]e | 7]8]9

————— 9
SMTIM N UPDATE TASK DECREMENTS
= SMTIM.
Y
UPDATE STS EVERY 500mS
\TE N '
Mgs‘;sams. NOT EVERY FUNCTION CALL.

SET UFT PONTER TO
LOCAL FOR FNCT @.

A TASK CALLING THE HANDLER ¢
WILL KILL THE DELAY.

Ll s
e by
e

Figure 26 SMHND Flowchart

A

)
t

SN

74

v

KONRRS ¥
AR 3 I %




......................

Tt sy BRI
At e

RS LT
“.

A

T T
LR

S

¥ ]

UF TADR —> | REQUEST STATUS
CALLING TASK NO.
SMFUN

L BUFADR

BUFSIZ

Figure 27 SMHND Calling Parameters Table

75

_____________________




cutes the requested function. Then a check is made to see if the handler's

local time of 0.5 sec has expired. If so, then the LM status byte in SM is
updated and the timer is reset to 0.5 sec., Next the UFT pointer is set to
point to the local UFT table containing the function request UPDSTS (e) And
an EXEC DELAY of 0.5 sec is requested. This insures that LM status is up-
dated periodically between 0.5 and 1 sec. Refer to Appendix(, Section 3-F fo-

detail on the structure and workings for each function.

2.3.6.4 SM Communication Protocol
Figure 28 shows the organization and usage of the Shared Memory.
- There are 256 bytes divided into four 64 byte areas. #©-63 is labeled IOBUFP
‘? and is for data output from LMG to subsystem. 64-127 is labeled IOBUF1l and
é; is for data input to LMG from subsystem. 128-191 is labeled LMBUF and is

8 used for LM Function Command parameters between the LM and the LMG. 192-255
P! is used for all the control and status information between the LM and the LMG.

2.3.6.4.} Function Command Protocol

The LMG-LM function command handshakes are handled by an interrupt
routine rather than the Shared Memory Handler. Two bytes in Shared Memory
are used for the function command handshakes: 1) Address FF hex is written
by the LMG with bit 7 set to 1 and the command number in bit & - bit 6. .
2) Address FD hex is written by the LM with the resulting command status
code. ;

Bit 7 of address FF hex is used as a semaphore and set to 1 by

the LMG when a command is written and is cleared to £ by the LM to acknow-
ledge receipt of the command. The sequence of events in a command handshake

is as follows:

76

SR P (ARSI




-35,
)
{
P -~
o5 cmoar Fr s | omd #
y >nw iNT to LM
g OXCMD  FE x A
-t
2 CMDSTS FD LMF cmd. status
b FC “?YIRFO 'Fl;l X REQ [RDY f—both sides RMW
DXSTS  FB X wSe
7. STSALR FA |s x
T [\ cleared by RESET
5 Fo x " written by SMHND
y . LMSTS F8 LM diagnostics —written by LMDIAG
= F? NP init, SS comn, W/ W/0 NP }
itten by NPHND
s Fé& NP diognosis, HND error - >
e " F5 | (CA conf., operational, error
written by ICAHND
T Fa ICA error #, HNO error
- LasTS k3 | LA DIAGZTO stop/block written by SMHND for NRTSK.
F2
. 1 50 by
g tes %
T spary
.‘: (]
- HWTST  Co BOCH is tosted by SMHND for presence of NW cerd.
. BF
1Y
b .L 64 bytes ’L
R v LMBUF 'T
5 LMBUF 8@
TF
;;, IOBUR is for input: SS—p LMG.
.-, L 64 bytes
¥ 10BUF |
& .
. 10BUFI 40
':'j 3F
-,
- I0BUF @ is for output: LMG—>SS.
- 64 bytes
. ~s
5y # 108UF P T
‘ i0BUF® @0 SMBASE is 8d06.
I’
Figure 28 SM Memory Map
" 77
g
*

b




- e
st .

G A i~ Siinc Ianns WAL MR DL EARL  JN
.............

LMG writes into address FF hex with bit 7 set to 1 and the

command number in bits @ through 6.

2) This generates an interrupt in the LM. The interrupt routine
clears bit 7, checks the velidity of the command number, and
writes an intermediate status code 'command received' (+1)

into address FD hex.

3) When the Command Interpreter executes, it changes the inter-~

mediate status to 'command active' (4+2) in address FD hex.

4) When the Command Interpreter completes execution of the com-
mand it writes the final status code (¥ or-n) into address

FD hex.

2.3.6.4.2 Data Transfer Protocol

Data transfers take place between the LMG and a subsystem. The
software performing this in the LM is a nonresident task loaded from either
the LMG or the NP. The nonresident task utilizes the SMHND to make data
transfers to or from SM. Three bytes in SM are used in the data transfer
handshakes: 1) Address FE hex written by LMG to cause LM to manipulate
handshake bits, 2) Address FC liex contains the buffer control bits, and
3) Address FB hex contains the byte count for data transfers. There are
four types of data transfers: Sequential input (SEQIN), Refreshed input
(REFIN), Sequential output (SEQOUT), Refreshed output (REFOUT), Following

is the handshake sequence for each of these.

SEQIN: 1) Nonresident task calls the SMHND function SEQPUT to put a

buffer of data into SM.

78

.........
.................
.................




—
- ‘.i.I\-.\..->....,_.'.vA Bl S e S e s oa aon ey

Y

2) SMHND transfers data and byte count from task buffer into SM.
3) SMHND sets RDY1l (b7 in FC) = 1.

4) SMHND sets asynchronous service request (b7 in FA).

5) SMHND returns 'pending' (+1) status to nonresident task.

6) LMG clears asynchronous service request (b7 in FA).

7) LMG requests the buffer (if RDYl=1, then RDY1=@ and REQ1=1).
8) LMG reads the byte count and data from SM.

9) LMG issues STATUS function command to LM.

10) LM CMDITR function STATUS clears REQl to 4.
11)  Nonresident task calls the SMHND function S1READ to check

REQL bit. Transfer is complete when R™"1 has been cleared

to 4.

REFIN: 1) Nonresident task calls SMHND function REFPUT to put a buffer
of data into SM. If REQl=1 then 'pending' (+1) status is
returned to nonresident task and task relinquishes CrU con-
trol to try again soon.

2) SMHND clears RDYL to f.

3) SMHND transfers data and byte count from task buffer into SM.

4) SMHND sets RDY=1,

f . 5)  SMHND returns 'success' (p) status to nonresident task.
J 6)  LMG requests buffer ({f RDYl=1 then RDY1=0 and REQl=l).
3

T 7) LMG reads byte count and data from SM.

f 8) LMG writes DXCMD (address FE hex) = @3 causing an interrupt
to the LM,

9) LM interrupt routine sets REQl=ff and RDYl=1l.

79




oy W o T P P ——— prep—

T

b e
DN l.'l"]
, Y

»

-

AL

LA

SEQOUT: 1) LMG requests buffer (if RDYf=1 then RDY@=@ and REQf=1).

:f 2) LMG writes byte count and data into SM.

Ej 3) LMG writes DXCMD (address FE hex) = f@ causing interrupt to
Ei the LM.

- 4) LM interrupt routine sets REQ@=@ and initernal 'DATRDY' flag=1.

5) Nonresident task calls SMHND function SEQGET to get data.

If DATRDY = # then 'pending' (+1) status is returned to the
nonresident task and the task relinquishes CPU control to
try again soon.

6) SMHND transfers data and byte count to task buffer.

7) SMHND clears internal DATRDY flag to f.

8)  SMHND sets RDY#=1.

9) SMHND returns 'success' () status to nonresident task.

REFOUT: 1) LMG requests buffer (if RDY@=1 then RDY@=¢ and REQ@#=1).

2) LMG writes byte count and data into SM.

3) LMG writes DXCMD (address FE hex) = ¢1 causing interrupt to

2

o

Ef the LM.

Q?

%, 4) LM interrupt routine sets RDY@=1 and REQ@=0.

(3

:5 5) Nonresident task calls SMHND function REFGET to get data. .
o 1f REQH=1 then 'pending' (+1l) status is returned to the non-
fﬁ resident task which relinquishes CPU control to try again

s

- soon.

i 6) SMHND sets RDYP=p.

?i 7) SMHND transfers data and byte count to task buffer.

3! 8) SMHND sets RDY@=l.

% 9) SMHND returns 'success' (P) status to nonresident task.

- 80




s
"
.
1]
,
{
.
“ o1
|
!
]
4
d
1
1
[}

e i e St e e e e e

S iy

—TY
b H (4
-'-1‘1!;:
.

v

f

ﬁ 2.3.7 INTERRUPT SERVICE ROUTINE
The LM Motorola 6800 processor has three different types of in-
terrupts: Reset, Nonmaskable Interrupt (NMI), and Interrupt Request (IRQ).
.' Reset is used during power up or as a result of the reset pushbutton being
depressed. This action causes the hardware to be initialized and the soft-

ware to execute from an initialization program. NMI is not used. IRQ is

the only remaining interrupt source and is used to service all system
interrupts. Interrupts are enabled by clearing the interrupt mask bit in
the condition code register (6800 instruction 7TLI). Execution of the inter-
rupt service routine (INT) takes place whenever interrupts are enabled and
IRQ pin goes low.

The sources for an IRQ are listed in Table 12. There is a sub-
routine to service each of these sources and INT makes a call to each of
these as shown in Figure 29. Since each subroutine is called for every
interrupt, each subroutine must check for its interrupt conditions and

simply return immediately if its execution is not required.

All machine registers are automatically saved by the 6800 hardware
upon an interrupt and are automatically restored upon execution of a Return
from Interrupt (RTI) instruction. A detailed description of the interrupt

"
N routines is presented in Appendix C, Section 2-G.
\
‘
\

2.3.8 COMMAND INTERPRETER

The Command Interpreter (CMDITR) task runs in the LM and inter-
prets twelve (12) distinct commands from the LMG. These commands are listed
with a short description in Table 13. The LMG issues a command by writing
t the corresponding code into the command byte (address FF) in shared memory.
Status of the command is returned to the LMG in the command status byte

81

TN U Y Y N - e Y o » o+ ok s a




-“AD-A124 624 THE REMOTE LINK UNIT: R DENONSTRRTION OF OPERRT IONRL 2/3
PERFORNANCE PART III.. HOUSTON U
ELECTRICAL ENGINEERING C J TAYORA ET L RUG 81
UNCLASSIFIED RFWAL-TR-81-1131-PT-3-1 F33615-80-C-1895  , F/G 17/2




o et W=y

e e
L PSS I T P PR IR "
S PR T S »i~*,,¢A‘A——.'-—‘._-4.AM,A“.W?*‘-07‘A-"L‘;‘_“,’JA. D tim s S

T TR B N e o R VR I RN R N

%

0d:

s
]
.
A
.y
. a4
o
Lo
.
A
B
i, -
“,
> -
.
e
B
e
e
-
..
P
v
.
-
.
-
)
~
e
a

E

FEEE

=

onmm——
S—

EEE

ereerFEEE R

=z

i

| G
o

. YICROCOPY RESOLUTION TEST CHART -

", NATIONAL BUREAU OF STANDARDS-1963-A
v - e -
= ! ) ' L )

“\

. —

e

N B ANLANNE ¥ AR | :

i

- -
Ao, .

——— e ae - e
e PR M NP RO AP Y




NN S ’E"‘E’,"‘_" Pl i S S e Senc A -‘
Y
:
. Table 12
IRQ SOURCES
A Y

1. Time

2. CMDINT

3. DXINT

4. . INTPIA

5. NP RX

82
-';5-_‘!'.1 "‘.-“-‘~ RS o -




COMMENTS

b /  cLock \ INCREMENT CLOCK TICK

COUNTER FOR UPDATE TASK.

INTPIA DATA TRANSFERS FOR LMG
s/w ACCESS TO SM.

INTLMF LMG(WITH i/w SM) FUNCTION

INTERRUPT. JSR LMFI.
/ INTDX : LMG (WITH H/W SM) DATA XFER

INTERRUPT. JSR DXI.

SICRX NPHND RECEIVES SERIAL
BYTE FROM NP.

-
‘ RTI ’
Figure 29 INT Flowchart
83
T AT e BT TR e e et L T A TR T e e
PRI SN R SR R LR VL C A P W R S I A A —a e i i meah s




S e —— 'y ————

Table 13

IM COMMANDS
PRGMLD 81 Load non-resident task.
RUN 82 Run non-resident task.
STOP 83 Stop non-resident task. }
NPDIAG 84 Same as NPINIT. ‘
85 Reserved.
CANCEL 86 Cancel the previous cmd. that is pending.
XFRTBL 87 Transfer LM system tables to/from IMG.
STATUS 88 Clear input buffer request bit.
RESET 89 Resets CMDITR and ICA.
RESTRT 8A Jump to power up restart location.
NPINIT 8B Request NPHND to initialize NP's.
CONFIG 8C Configure selected subsystem.
NOOP 8D No operation.

-

¥ ,
A RTAE RS

. PN
‘(rrl’-;\ (3

PR X

e T
et e

(i}
.
.

84

A Cae e e e Lt T T e T N LT, e -
— omslanndianiin i bt aneniie B SOV L S ST Tl S S L S P T TR S . J




A PO A SRR DA S A e A e M oy . — —
‘ L e LI D I b Tn T e v e e e T —— A e s e e

(address FD) in shared memory and are listed in Table 14. The commands

are mutually exclusive and a new command may not be issued until the previous

command has been completed, with the exception of CANCEL and RESTRT, which

h may be issued anytime.

¥

o The command interpreter task shown in Figure 30 works in con-
é. junction with the LM function interrupt routine shown in Figure 31, When

the LMG writes into the command byte in shared memory, the resulting interrupt
initiates the LM function interrupt routine. The routine checks the command

for validity or express (CANCEL, RESTRT) and then does one of four things,

depending upon the command and the state of the command interpreter task:

1) if the command is express (ie CANCEL or RESTRT), then it is executed to
completion; 2) if a previous command is in progress, then an error status
(-2) is returned to the LMG; 3) if the command isinvalid,then an error status

(-1) is returned to the LMG; 4) otherwise, a flag is set up for the command

interpreter task to recognize and begin execution. A 'command received'
status is returned to the LMG.

The command interpreter task in its quiescent mode continually
checks for the new command flag set by the LM function interrupt routine

- and relinquishes CPU control if the flag 1s not set. When the flag is

¥
..

found set, the command status to the LMG is changed from 'command received'

to 'command active'. The interpreter task then calls one of twelve command
modules which return with a module status. This status is copied to the

command status in shared memory and the new command flag is cleared. The

TeTr T A B i S o
STl &Y T

interpreter task then returns to its quiescent mode waiting for another

command.

A description of each of the twelve commands will now be pre-

sented.

85

R T T T T N .
PRy W TP U SR I L P




.......

Table 14

CMDITR STATUS RETURN CODES

3 Command Status Indication
General +2 Command active.
+1 Command received.
2 Success.
~1 Invalid command.
~2 Another command still in progress.
~3 Command not implemented yet.
-4 Command cancelled.
PRGMLD -10 # of bytes not from ~1 to +61.
-11 Existing non-resident task is not dormant.
-12 TYPE not @ or 1.
-13 SOURCE not @ or 1.
-15 XFR or TRLR record with SOURCE = NP.
-16 Invalid start address.
-17 Invalid end address.
-18 XFR record with no HDR record.
-19 TRLR record with no XFR record.
-20 EXEC failure to REMOVE previous task.
=21 NP failure to upload task.
-22 EXEC failure to INSTAL NP task.
=23 Program checksum not 2zero.
-24 EXEC failure to INSTAL IMG task.
RUN -19 A task is not installed.
-11 The task is not dormant.
-12 Task checksum not zero.
STOP -19 A task is not installed.
-11 The task is dormant.
-12 Failure to STOP after 5 sec.
NPDIAG - see NPINIT.
CANCEL - None
XFRTBL -1g Invalid table number.
~-11 To/from LM not @ or 1.
=12 # bytes not from 1 to 64.
-13 Offset <f.
-14 Attempt to write a read only table.
-15 TIME: # bytes too large.
-16 TIME: Offset too large.
-17 NPREC: Function not P to S.
-18 NPREC: Invalid # bytes.
-19 SICSTS: Table shows <1 # of NP's.
=20 SICSTS: Table shows >20 # of NP's.

86




-y
(OO
e 8 8 A

* 1K~

-

- g7
o

?.

Table 14 (cont.)

CMDITR STATUS RETURN CODES

Command Status Indication
XFRTBL <21 NPHND error.
-22 ICCNFG: ICAHND error GRP A.
-23 ICCNFG: ICAHND erroxr GRP B.
STATUS - None
RESET -10 ICAHND fail to reset ICA.
RESTRT - None
NPINIT -19 NPHND error.
CONF1G -10 SOURCE not @ or 1 (LMG or NP}.
=11 GROUP not 1 or 2 (A or B).
-12 ICAHND error.
-13 NPHND error.
-14 Invalid NP table.
NOOP - None
87

s




COMMENTS

RELING

WAIT FOR NEW COMMAND

FLAG WHICH IS SET BY
N LMFI WHEN A NEW CMD
IS RECEIVED FROM THE
Y LMG.

SEND 'CMD ACTIVE'
| TO LMG.

!

GO TO THE COMMAND ROUTINE " [13 coMmanD TABLE
! ENTRIES. ONLY THOSE

s LABELED 'NOEXPR' ARE
- DONE HERE.
-------- IEACH ROUTINE RETURNS

2z

R

WITH CMD STATUS.

.7

LGOS I LA rs P Vi

SEND CMD STATUS
TO LMG. :
CLEAR NEW CMD FLAG.

Figure 30 CMDITR Flowchart

88

o'a: ‘l" o "b" LY r

El
e
|




..............

COMMENTS
[ ]
CMDACT STS
TO LMG.
TO L
GO TO CMD SuBr ] |'3 CMD TABLE ENTRIES.
ONLY ENTRIES
LABELED EXPR
- ARE DONE HERE.
EACH ROUTINE
-— RETURNS WITH
A CMD STATUS.
g [LOAD CMD NUM AND | [ SEND ERR -1
- SET FLAG FOR TO LMG.
. CMDITR. Y
sem.'j%ueu nsscewzo' SEND ERR-2
LEAR b7 SEMAPHORE TO LMG.
TO LMG.

Figure 31 LMF! Flowchart

89




PRGMLD (Program Load) is command number 81 hex. This command is
used to load programs into the nonresident task area in the LM from either
the NP or the LMG and then to install the loaded program as a task with the
executive.

RUN (Run nonresident task) is command number 82 hex. This com-
mand is used to activate the nonresident task for running as part of the
real-time system.

STOP (Stop nonresident task) is command number 83 hex. This com-
mand is used to stop the execution of the LM nonresident task.

NPDIAG (NP diagnostic) is command number 84 hex. This command is
used to cause the Nameplates to run their internal diagnostics. NPDIAG is
identical to NPINIT and is implemented as a jump to NPINIT.

Command number 85 hex is reserved.

CANCEL (Cancel) is command number 86 hex. This command is used
to stop the execution of any other command module already in progress.

XFRTBL (Transfer table) is command number 87 hex. This command
is used to transfer all or part of any one of eleven LM tables to or from
the LMG.

STATUS (Status) is command number 88 hex. This command is used
to assist in the data transfer handshake for sequential input to the LMG
by clearing the REQl bit in the S1 byte in SM (address FC hex).

RESET (Reset) is command number 89 hex. This command is used to
reset the state of the CMDITR task and the ICA hardware.

RESTRT (Restart) is command number 8A hex. This command is used
to cause the LM to jump to its power up restart location.

NPINIT (NP initialization) is command number 8B hex. This com~

90




.................

mand is used to cause the NPHND to reset all the NP's, assign addresses to
the NP's, and cause each NP to run its internal diagnostic.

CONFIG (ICA configure) is command number 8C hex. This command
when used causes the ICAHND to configure either group A or group B of the
ICA with configuration parameters from either the LMG or the NP.

NOOP (No operation) is command number 8D hex. This command is
used to provide the LMG with means of exercising the command handshake
without causing anything to happen.

The parameters associated with each command are listed in Table
15. Interactions with the rest of the system are shown in Figure 32.

Refer to the User's Manual for more detail on usage of the commands. Refer

to Appendix C, Section 2-H.

2.3.9 NONRESIDENT SOFTWARE

The LM has 2K bytes of read/write memory (addresses P4f@ to @BFF)
allocated for loading external programs for execution. An external program
may be either uploaded from a subsystem nameplate or downloaded from the
LMG. Although there are many types of programs (data I/0, subsystem diag-
nostic, calibration), only one program may be loaded at any one time. This
program is treated as an independent task.

A typical LMG command sequence to the LM might be as follows:

1) Issue command STOP to halt the present nonresident task.
The STOP command module will set a STPRQ flag for the NRTSK
to executive request EXIT.

2) Issue command PRGMLD, which will load an external program
into the LM nonresident task area from either the NP or the

LMG., The PRGMLD command module will perform the following

91

e, e e - N . .




Table 15

LM COMMAND PARAMETERS

PRGMLD header record: 8¢ - FF

PRGMLD transfer record: 88

81 - TYPE #¢ - 1/0 program
g1 - DIAG program
82 - SOURCE @@ - LMG

g1 - NP

# bytes, #1 to 3D

81

starting load address, high byte

82 starting load address, low byte

83 to BF - program bytes

PRGMLD trailer recora: 8@ - @@

XFRTBL:

CONF1IG:

8¢
81
82

83

84

8g

81

82

81 - program checksum

table #, @1 to @B

# bytes

offset into table

to/from @@ - LM to IMG
g1 - ILMG to LM

to BF -~ table loaded by LM or LMG depending on to/from
byte

- SOURCE #¢ LMG
g1 - NP

- GROUP @1 - GRPA
#2 - GRPB

to 89 - configuration data if from LMG

TR PSPPI U P R U T R S N e L N Y

92

b oo BMen  a..a a "




NON-
RESIDENT

................

........

.........

ROUTINE

..............

....................

LM
FUNCTION
INTERRUPT

—  SM
TASK
UPDATE COMMAND | P orm ICA
TIME H INTER- FE‘,TTBL ll-q ©  ICA
TASK ' PRETER HANDLER
FY PTR NP
EXEC FT TBL F NP
HANDLER
Figure 32 Command Interpreter Interactions
93
e e g e PR W e




PP RAL S XA ¥
s

F R,

AL

..............................................

functions:

a) Request the executive to REMOVE the previous task from
the active task list.

b) Load the new program into the nonresident task area.

¢) Verify the new program's checksum.

d) Request the executive to INSTAL the new task on the
active task list.

3 Issue command RUN to start the nonresident task. The RUN

command module will issue the executive request ACTVAT.

The nonresident task may use resident LM resources. These include
SM, ICA, and NP handlers, data and time of day, and in particular executive-
supplied math functions. As an example, for this demonstration there is a
synchro input/output task which when running requires the following services

and resources:

EXECRQ ICARQ for synchro input voltages.

EXECRQ MATH for voltage checks and calculationms.
EXECRQ ICARQ for synchro output voltages.

EXECRQ SMRQ to send degrees data to LMG.

EXECRQ DELAY for loop timing between outputs.
EXECRQ SICRQ to record errors.

TIME to record time of error.

In order to properly load and execute a nonresident task, the first

thirteen bytes of the nonresident task must be a header of the form:

1) to 6) Program name - 6 ASCII characters

9

i PN N AN N YU S T SRS 1P, P N W S T A I RN WA ST S WL S Ry S S




PR IR SE TP S .

et e LT e e LT P R T BN

R I R R N I I A PR T R L L T T,
V. R . ..

i

7) Start address H

8) Start address L

9) End address+l H
10) End address+l L
11) Initial stack pointer H
12) Initial stack pointer L

13) Reserved for insertion of program checksum

These parameters are used by the system during both loading and activation

for execution.

95

L2PSE B I I
Sinal




.

T"?rr;Yf
AN

P8

Y

a7

(TSN

D N R “  r o e m e s
Lt Wt A e MR R R - R R N T S N L TP S LU SUUC T SN R,
R T . " i -

SECTION 3

INTERFACE CONFIGURATION ADAPTER

The Interface Configuration Adapter (ICA) is the component that pro-
vides the LM with its universal interfacing capability. The RLU, working
with Electronic Nameplates, can identify interfaced subsystems and auto-
matically configure the ICA with the appropriate electrical interface.

The ICA can be used with a wide variety of 1/0 signal types. The
interface consists of two groups of four 1/0 channels. Each group can be

independently programmed to support either:

1) 4 AC or DC analog input or output lines, or
2) 4 parallel digital input or output lines, or

3) 1 serial synchronous digital input or output channel with
handshaking, or

4) 1 synchro input or output channel, or

5) a variety of self-test terminationms.

The ICA can be described in terms of the following 7 major hardware

sections:

1) Signal input and output (SI0) channels for Group A.

2) S$I10 channels for Group B.

3) Reference Generation (shared by both groups).

4) Address decoding and configuration control (ADCC) for Group A.
5) ADCC for Group B.

6) Serial input and output (SERIO) circuitry for Group A.

7) SERIO circuitry for Group B.

96

ol acta R AN . oo
' R SR ST T T SR S5 I - T M I ot R




»
.....

These sections and their interconnections are indicated in Figure 33,
3.1 SIGNAL I/0 CHANNEL DESIGN

A block diagram of a signal input/output (SIO) channel is shown in
Figure 34. The channel provides the required functions of digital-to-
analog conversion, analog-to~digital conversion, amplification, buffering,
sampling and logic level processing. The SI0 channels interface to the LM
through several control lines, read/write strobe lines and the ICA bus.

The SI0O topology is unique in that it provides a signal wrap around
feature. Each SIO channel contains an ADC which is continuously updated
at an800 samplesper second rate. This ADC can be read at any time by the
LM to measure the input level if the SIO channel is programmed for input
or to measure the output level if the SIO is programmed for output.

The input and output functions ére completely independent in the SIO,
sharing only the common subsystem bound 1/0 lines (+/-). With the SIO
channel programmed for output the input can be used to perform several
internal test functions or to monitor the output. The output can be pro-
grammed as single-ended (with the return through the SIO ground line) or
as differential. This programming has no effect on the input configuration.

The output signal is derived from one of three sources:

1) the output DAC,

2) the group HILEVEL signal line, or

3) the group LOLEVEL signal line.

ol K3 At A XY s
L A

o

This selection is through the output MUX as shown in the Figure 34 . Ad-
dressing of the MUX 1is controlled by the ADCC section of the ICA. For

97

13 SORMRTATRINE P 75

ay . e, e .
L PRSI Y e e e

P e -t A A ‘.t
atan s Ta e IRIPN, NS SR R LI R

.........
N W Wy~ G W Y




SHivd
071

SHivd
os1 )

suoT3oag ©3U} YOI @Yl JO uoyIFsoduodaq

]

ge — 0IS
82 —0IS
g! —0IS

S13A3T 1NdLINO VLI9Na ' 90TVYNY
S13A31 INdNI 1v1I9I0 S0TVNY

89 — OIS

S3ONR3IBN Iva 'oav

€€ 2andy4g
8-0143S
w¥<Iwouua viva
viva VIN3S RERL L

VE — 0IS f

vz -ois [&

ONIWIL
ST13A3T
NOILVY3IN3O
ION3H34AN ONINILL
S13A3I
V- 20QV Wll
ONINLL
o ors W S3ON3NI43N OVa ‘oQv v :wauuu g
- A ‘01’ 1191
S13A3T S3MHL ‘01 ' IH Wwlioid VO VRIES -

Ve - OIS

S13A37 1NdNI V11910 "90TWNY

$13A37 INd1NO V1I9Ia 'O0TVNY

98

e

S IR
O BRI
NP S e W Y [ -

o

P N
e S . .

O SRR S

LR )




&

8

ﬁ Touuey)y 0/1 TeudfS e jo meaSeyrq FooTqg H¢ 2and1y

y -

.- e
N V- SS3400V XNW INdNI
r H V@ — JOULINOD ¥3ddN8
' Ve
] V-T3A37 S3WHL
.,_ N ONISSI00Nd >
g 8 HOLVAWANGD| ~ WLIOIa ve—-NiSid

_._ 3 2 —<
| i ONINLL

z < L 1=y~ <
2 m V@ ~SSINAAV XN .Su.SoH
W V—13A37 00
* v { A
> o} v-I3A3T M

a " <
. 2 - \ 9 ' v-30N3HI4N WG

o4 !
St m . H/L a dﬁﬂ

8 1S | u3anewy v

. WIIN3Y34410 .P%O

g Fr 4 8 3%
B hd sng vt T
2
" 434408
e iNdiNo

& . V@ - TONINOD ¥3ding

o Y VS A V. ZPN- S A SO L S

VaIi/W1

99

FOVIHIALNI

LA A gl - o e e e
o

B Y . .
PR R N R
P P R P NPENPE RS




analog output, the output DAC is selected. The reference applied to the DAC
originates in the ADCC section of the ICA. For DC outputs the DAC reference
is 10 volts. For AC outputs the DAC reference is a 400 Hz sinewave of fixed
amplitude. For digital output the MUX is addressed to the programmed HI or
LO logic level depending upon the desired output logic signal.

Digital inputs are processed through the normal input MUX and Differen-
tial Amplifier. The logical threshold is programmed for the group as the
THRESLEVEL shown in the Figure 34. Following level slicing, the logic
input is processed and made available to the LM on the DIGIN line. This
section i1s always operational so that simple level detection can be accom
plished in either the digital or analog modes.

Appendix B, Section 3-A contains a detailed schematic of the Signal I/0 channel
and will be referred to in the discussion below. The discussion will focus
on the operation of Channel # but will of course be applicable to each of

the four channels in a group.

3.1.1 ANALOG INPUT PROCESSING

The analog input signal processing is accomplished by the input
multiplexer M1, the input amplifier M2, the track and hold circuitry con-
sisting of M15 and M8 and the channel analog to digital converter (ADC)
MI11.

The input multiplexer is programmed to either address 3 or 7 to
allow input signals to reach the input amplifier. Note that the input
amplifier is an instrumentation amplifier capable of implementing either a
single-ended amplifier or a differential amplifier. Address 3 results in
a single-ended input with the positive (+) input lead going to the positive
input of the amplifier and the negative (~) input lead being open circuited.

100




The signal return is assumed to be provided via the group signal return line
of the interface cable. Additionally address 3 uses the multiplexer to
ground the negative input of the amplifier. Address 7 results in a differ-
ential input configuration with the + input lead going to the + input of the
amplifier and the - input lead going to the - input of the amplifier.

The common mode limit of the input amplifier (+/- 10 volts) must
be observed by any input signals. The amplifier is protected from overloads
at the input by the protectior circuitry of Rl, R2 and D1-D4. The amplifier
provides a gain of one to any differential signal applied to its inputs.

The common mode rejection ratio of the input amplifier is specified as
greater than 70 dB at a gain of one. The input impedance of the input
amplifier is greater than 3x10**9 ohms. The amplifier output is applied
to the input of the track and hold circuit.

The track and hold circuit provides the signal processing required
by the analog to digital converter. For DC input signals the track and hold
circuit is used in a conventional manner. The +/- line from the ADCC sec-
tion is held in the + state which results in the track and hold circuit
having a gain of one when in the track mode. The signal is sampled and the
sample converted by the ADC at an 800 samplesper second rate. The hold/
track modes are controlled by the H/T line from the ADCC. For AC signals
the +/- line is used to invert the gain of the track and hold circuit at an
800 Hz rate. The gain is made positive during the positive half cycle of
the 1ICA 400 Hz reference signal and is made negative'during the negative
half cycle. The H/T signal takes a sample at the positive and negative
peak of each cycle of the 400 Hz reference. If the input AC signal is

derived from the ICA 400 Hz reference the circuit operation results in

101

—atd




.‘\'

o

i v sampling the peak value of the input waveform and obtaining a sample whose
S polarity is indicative of the phase of the input.

ﬂ: The ADC chip used is designed to accept inputs of 0 to + 5 volts
oy

oS and to provide a straight binary conversion on these inputs. The ICA is
- designed to process signals in the range of +/- 10 volts. The output of
é; the track and hold circuit is scaled by resistors R13, R1l4, and R15 to

= accommodate the ADC input requirements. The ADC output count relates to

Y

s the input voltage through the formula

= = - L1

= vin 12.8 + 0.1*(COUNT)

. .

- The correspondence between significant voltages and counts are given below.

ol Count Voltage
Decimal Hexadecimal

< 0 g -12.8

2 28 1c -10.0

128 8¢ 0.0

3 228 E4 +10.0

¥ 255 FF +12.7

\:

) The ADC runs continuously in any of the ICA modes. The ADC chip
.'5: has an internal register which is updated at the 800 Hz sampling rate de-
._l
Y
o scribed above and which can be accessed at any time by the LM.

%) 3.1.2 DIGITAL INPUT PROCESSING
5 Digital inputs are processed through the input amplifier M2 in

Cad
2 the same manner as are analog inputs. This provides for a high input
- impedance for the digital input as well as the capability of either single-
7 | 102
™~
t.‘:

2n




ended or differential processing as described above. The output of the
input amplifier is connected to an analog comparator M7. The comparison
threshold is programmed in the reference generation circuitry described in
Section 3.2. The comparison threshold can be programmed between +/- 10
volts. This allows the ICA to process inputs from virtually any standard
logic family. The resulting logic states at the output of M7 reflect
whether the input is above (logic one) or below (logic zero) the programmed
threshold value. Negative logic can be interpreted by proper handling in
the LM via programs in the Electronic Nameplate.

Logic processing circuitry for the SIO channel consists of M9 and
M10 which can be programmed to two distinct modes. In the follow mode the
output of the comparator is continuously sampled at a 500 KHz rate by M9A.
The Q output of M9A is multiplexed to the DIGIN-OR line by M10 and is read-
able by the LM by means of circuitry described in Section 3.3 below. The
DIGIN-OR line simply represents the most recent sample of the comparator
output and will follow this output continuously. In the latch mode the
sampled comparator output is used in latch M9B., If the input crosses the
programmed comparisc. threshold from above M9B will be set. The state of
MI9B is multiplexed to the DIGIN-OR line by M10 and is readable as before.
Each time the four DIGIN lines of a group are read by the LM, circuitry in
the ADCC section of the ICA resets the input latches (register M9B) for the
entire group. This mode is designed to process momentary signals such as

produced by contact closures.

3.1.3 CONTACT CLOSURE PROCESSING
Contact closures, either floating or to ground, can be detected

in either of the two modes described in Section 3.1.2.

103

- il m m oa - —a e ea

e




For floating contacts, a differential input is configured by the
input MUX M1l and the internal Thevenin sources are placed on the I/0 lines
by activating analog switch M3. This results in a balanced +/- 5 volt
source with a 6.7 K ohm source impedance which is applied across the input
leads. If a contact is closed across the input pair the input voltage is
reduced from 10 volts to O volts. A programmed threshold of 5 volts
applied to M7 will result in the state of the contacts being represented
by the logic level at the output of M7, This level can be processed as
any other digital input.

Contacts to ground are processed by selecting a single-ended
input configuration and setting the logic threshold to 2.5 volts. The ex~
ternal contact is placed from the + lead to ground and sees a Thevenin
source in the ICA of 5 volts and 3.33 K ohms. The contact closure reduces

the output of M2 from +5 volts to 0 volts,

3.1.4% ANALOG OUTPUT PROCESSING

The analog output signal processing is accomplished by the output
digital-to-analog converter (DAC) components M13 and M1l4, the output multi-
plexer M12 and the output buffer amplifiers comprised of M4, M5 and M6.
The analog output value is determined by two parameters which are input to
the DAC: the output signal type (DC or AC) determined by the reference

input to the DAC and the output signal amplitude determined by the digital

input to the DAC. The DAC is a four quadrant multiplying type and as such

A
]
h]
)
A}

can provide output signals of the form

- v
N Rk 1 XY

= *
Vout Vref* (128-COUNT) /128

]

[}

where Vref is the reference voltage applied to the DAC and COUNT is the

l'

. ,.4_,.
SERENLNEN I - R
&t e I 4 ot -'-.Q
.
.
B

104

-




T ———— v

value of the digital input to the DAC. COUNT is interpreted as varying
between +127 and -128 (offset binary). The table below illustrates the

correspondence between COUNT and special voltage values.

Count
Voltage
Decimal Hexadecimal
0 gg 10.0
1 g1 9.92
128 8¢ 0.0
255 FF -9.92

For single-ended DC output the reference voltage Vref is set to
+10.00 volts. The available analog output ranges from -9.92 to +10.00
volts. The single-ended state is detected in the ADCC circuitry by *.gic
which determines the number of output buffer amplifiers which are enabled
(one => single-ended, 2 => differential outputs). When two channel buffers
are enabled, the value of the voltage Vref is reduced to +5.00 volts. The
differential output ranges from -9.92 to +10.00 volts. For single-ended
AC outputs, Vref is a 20 volt P-P sinewave at 400 Hz. This allows the
output to range from 0 to 20.00 volts P-P at O degrees phase shift relative
to the reference and from 0 to 19.84 volts P-P at 180 degrees phase shift
relative to the reference. For a differential output configuration, Vref
is reduced to a 10 volt P-P sinewave at 400 Hz, providing the same output
range as the single-ended configuration.

When the ICA is configured for analog output the DAC output 1is
routed to the output buffers through M12. This is accomplished by address-

ing M12 with address 3. The logic for addressing M12 is in the ADCC section

105




r A .

(3N

T

- v
PR c et s
. AT )

of the ICA.

The buffer amplifiers consist of M4, M5, M6 and theilr associated
circuitry. These amplifiers must provide a very low output impedance to
drive the subsystems and yet must be controllable so that they present
essentially an open circuit when the channel is used for input. The re-
quirement for low output impedance prevents the use of a conventional
analog multiplexer to connect or disconnect the buffer from the input/out-
put leads. A typical electronic analog switch has an on resistance of 100
ohms, which is far too large to add to the buffer output impedance. The
circuit used solves the problem by utilizing complementary symmetry output
buffers (Ql1-Q2, Q3-Q4) inside the loop of an op-amp stage (M4A, M4B). The
buffer stage is switched in and out of the op-amp loop by analog multi-
plexers M5, M6. The op-amp stages retain feedback in either mode through
the multiplexer. Note that if the buffer is removed from the op~amp loop
the only effect on the input/output lines is a small leakage current (the
difference between the Icbo's of the NPN and PNP buffer transistors). When
the buffer is activated the multiplexer switch resistance is inside the
loop of the op-amp so that a very low output impedance is maintained. The
complementary buffer is biased for class B operation and as such can con-
tribute crossover distortion to high frequency AC waveforms. The op-amp
selected has a slew rate of 13 v/isec and at 400 Hz the crossover distor-
tion is negligible.

Analog outputs can be either single-ended or differential depend-
ing upon the programming from the ADCC section. Each buffer amplifier
(positive and negative) is individually controllable. As mentioned above,
the ADCC logic automatically alters the output DAC reference so that the

106

et e om® % M s A "m oom. Al

T




output range is always +/- 10 volts for either single-ended or a differen-

tial output modes.

3.1.5 DIGITAL OUTPUT PROCESSING

Digital output levels corresponding to the two binary logic states
(one and zero) are programmed in the DAC's located in the reference genera-
tion section of the ICA. These levels are made available to the analog
output buffers through the analog multiplexer M12. Each logic level can be
independently programmed to a value in the range of +/- 10 volts. This
allows interfacing to a wide range of logic famiiies and easily implements
a negative logic scheme. The logic in the ADCC section provides proper
addressing to multiplexer M12 so that either address @ (corresponding to
the value programmed for a logic zero) or 1 (corresponding to the value
programmed for a logic one) is selected based on the logic level programmed
by the LM for each group channel. Note that the logic levels are the same

for all channels within a group.

3.2 REFERENCE GENERATION

A block diagram of the reference generation portion of the ICA is

shown in Figure 35. This portion generates the following reference

signals: 400 Hz AC reference waveform, +5.00 volt DC(ADC reference),

+10.00 vde, +5.00 vdc, 20 vp-p ac, 10 vp-p ac(DAC references), HI, LO, and
THREShold levels used in processing digital signals in the SIO groups.

Appendix B, Section 3-B contains a complete schematic and parts list for the re-
ference generation section which will be referred to in the following
discussion. The reference generation section contains portions which are
shared by both groups and portions which are group specific. This common-

ality will be pointed out in the following sections.

107

P D

S LN o T - B .
L0 0, Sy W N LI W0 U 5. 37 AP S WU PO ST WY Wg I PN P - : PO Y - P S PR S PNy W WP AJ




r wo384S UOFIBIBU3) 2OUD1I3JOY B JOo weAZRFQ NOoOTg G€ 2anSyi
2 sn@ vl 3 ..
i
p w
ova Vv- WN :

V—13A31 S3UHL J-

g BA31 S3uHL 380815 .g
2 é P01 fe i,
<ln_w>w|_ Ol_ d 38041S J w 4
< C owa - “
V-T3ATT H O\ V-13ATTH < rv = 1
38081S 3 ;
| <J8 “
V - NOLLVMNOIINGD M
2 < 9] ”
g PNRIN 2qv N IONIYI3Y -]
g | 170A Ol + . B
SISIHLNAS < 4
IJAVM3NIS NInILL . ;




3.2.1 400 Hz AC REFERENCE

The 400 Hz AC reference signal is used to generate 400 Hz AC out-
put signals and to provide timing to process 400 Hz AC input signals. It
is derived from the LM master clock (1 MHz) by direct digital synthesis.

The basic timing is accomplished with counters M1, M2, and M3.

M1l and M2 are used as divide by 5 counters, resulting in 40 KHz at the
output of M2. The output of M3 is decoded in M5 at a count of 50 and reset
resulting in a total division of 50x5x5 or 1250 and an 800 Hz timing signal,
R800. M7 contains 50 8-bit samples of a sinewave. These samples, addressed
at O through 49 within the ROM, cover one half cycle of the sinewave. The
samples are applied to the reference DAC (M8) at a 40 KHz rate so that each
half cycle is developed in 1/800 second. M10A and M9B, combined with
timing through M14A and M14B, provide synchronous signal inversion so that
a full 400 Hz sinewave results at the output of M9B. This signal is used
internally as the AC reference for various DACs and is made available
externally through the ACREF and ACRET lines in the ICA/Subsystem interface
cable. Ql and Q2 provide signal buffering fpr the AC reference.

Timing for the ADCs in the SIO channels is also generated in
this section. The outputs from M3 are decoded in M6 at a count of 25 to
provide the H/T timing signal. This signal results in the track and hold
circuit entering the hold mode at the peak of the ICA reference. Assuming
that there 1is no phase shift between the generation and the measurement of
the reference, the ADC will digitize a peak value from the AC waveform.

The signal +/- is also generated in this section (M14B, M18C). This signal
is used in the SIO channel to synchronously invert AC signals.

The 400 Hz reference is buffered as described above and made

109




ARl art s I G 5~ A e A (P e e e o W P -

B

.

available to the subsystem through connector J4. It is also used as the

group analog output DAC reference when the group is configured for AC out-

-
A
N
o
el

»

put. The full 20 vp-p reference is used for the single-ended configuration

BRI

and a 10 vp-p reference is used for differential configurations.

3.2.2 +10,00 AND +5.00 vdc REFERENCES

M17A and its associated circuitry are used to generate the DC
references. The output of M17A is a constant +10.00 volts, calibrated with
R4. M17B provides a buffered +5.00 volts to be used as the reference volt-
age for the ADC's located in the SIO channels. The DACs in the SIO
channels of Group A use as a reference the output of M15A. Group B DACs
use the signal from M15B. These signals can be a constant +10.00 volts, a
constant +5.00 volts, a 20 volt p-p 400 Hz sinewave or a 10 volt p-p 400
Hz sinewave depending upon the exact configuration programmed into the ICA.
Single~ended DC outputs require a +10.00 volt DAC reference. Differential
DC outputs use a +5.00 volt DAC reference so that the amplitude program-
ming is the same for both single-ended and differential configurationms.
Single-ended AC outputs require a 20 volt p-p DAC reference while differen-
tial AC outputs use a 10 volt p-p DAC reference. The selection logic for
Group A is implemented with M13A, M1lA, M16A and M16B. The selection for

Group B is implemented with M13B, M11B, M12A and M12B.

3.2.3 HI, LO, AND THREShold LEVEL REFERENCES

Ul through U6 are used to generate and store the HI, L0, and
THREShold references used in groups A and B. Each Ul is a full four quad-
rant multiplying DAC which can be programmed directly from the ICA bus.

The write strobes are generated in the ADCC circuitry described in Section

110

T T T e T e e e e B . . . c e K .
LW AR S R AP S ST SIS S, VOGN S VLA TOU S Y-V G S S ST ST S I S ST VU Vel W SN SE R S




3.3. The DAC used for setting the digital THREShold level uses the +10.00
volt reference and can generate a THREShold value between + and - 10.00
volts. The DACs which hold the HI and LO digital output levels use D/A
reference for the appropriate group. This reference is automatically set

to +10.00 volts for single-ended DC output configurations, to +5.00 volts
for differential DC output configurations, to a 20 volt p-p zero phase sine-
wave for single-ended AC output configurations, and to a 10 volt p-p zero
phase sinewave for differential AC output configurations. The programmed
count in each of the DACs allows setting the HI and LO references to

values within a factor of +1 to -1 of these values.
3.3 ADDRESS DECODING AND CONFIGURATION CONTROL

The address decoding and configuration control (ADCC) function is
performed on a group basis. The following will diséuss the operation of
the ADCC section for Group A but is applicable to the Group B ADCC section
as well. The block diagram for the ADCC function for one group is shown
in Figure 36. Appendix B, Section 3-C contains a complete schematic and parts
list for the ADCC section.

The ADCC function is divided into two basic operations: the decoding
of addresses for the various addressable modules in the group and the

control of the SIO configuration.

3.3.1 ADDRESS DECODING

The addressable modules associated with each group are:

1) The 7 DACs (4 for analog output values from the 4 SIO
channels and 3 for the group HI, LO, and THREShold values).

2) The 4 ADCs (one for each SIO channel).

111

P WYy St - PR S - VT Ay, P ) - LI P VLY WD W W . - . . PO N S S R ]




uoy31d9s Suypodaq ssaappy ay3l jo weadeyq yoord 9¢ o2andyg

" N ~
. ) - S .
WIPUCIPVYL W U WOl R iy S P

* sna
vl 4
5 muag [ 108100 | [ ¥300030
TV H3AIA te— NOLLONNA jl. | |
. 1nd1no| | wvioads

P ..

1 .
B 3 g
70481NOD :
NOILVYNOIINOD =— @ I~ a 3
GYVANV1S ofF—=<9v c g
o > p
- HOLV) 3 v o118 o 3
2 JOULNOD NOLLVINOIINOD a oy v = .
| I0¥LNOD z
- e |
(OI¥3S) 2689ON | S ———< ¢v m
s P
TOHLINOD O/1 WIN3IS ™ g “OUINO) Vid 3 < 2V 1] 3
. 100 vLI9I0 «— M L v .
NI Lol —f Y JONissawaay | o
vid Jva’oav vl .

1S UM «-——{ ¥30000}——~ 290

LM ——=< ™y
¥lS Q@«—— /QV3H }—< SOVl “/




3) The SIO configuration words (2 addresses).
4) The peripheral interface adaptor (PIA) (used for the 4
parallel digital lines of the group and to provide control
lines associated with the serial I/0 function, requires 4
addresses).
5) The synchronous serial data adapter (SSDA) (used for the
serial 1/0 function, requires 2 addresses).
The above units require a total of 15 unique addresses (note that the &4
analog output DACs and the 4 analog input ADCs use the same 4 addresses,
an LM write is directed to the appropriate channel DAC and an LM read is
directed to the appropriate channel ADC). The address map for each group
is presented in Figure 37,
Ml and M7 perform the basic address decoding function. Ml de-
codes relative addresses @ through 7 while M7 decodes relative addresses
8 through 14. The logic of M4A-B, M5A-B, M6A~E, M10OA, M10D, and M1lA-B
serves to select the address range in blocks of four addresses using the
address lines A2 through A6 from the LM. Note that the only change re-
quired by Group B is the inclusion of an inverter in the A4 address line
to displace the addresses by 16.
Devices are read by the LM by decoding the appropriate address
.and directing the read strobe to the appropriate register. The delays
caused by the use of CMOS logic does not cause problems during reads since
the data is taken from the ICA by the LM at the end of the machine cycle
and the decoded read enable occurs near the beginning of the cycle. The
setup times for the interface registers are met by using a 1 MHz clock for
the LM clock. Devices are written into by decoding the appropriate address
and directing the write strobe to the selected register. The delays caused

by the use of CMOS logic are & problem since the data is to be taken from

113

P TP,




DATA BUFFERS

Analog w/ovt ch.g

Analog w/eut ch.d

Analog /ot ch2

Analog m/ovt ch.a

avalle( vallel
’output '?nput

PIA control

gevial th/out

SSDA control

CONFISURATION BUFFERS

Topology word §

ADDRESS
(HEX)
a8y
aag7 GROUP A
asip unused
asi 7 GROUP B
unused
qQéud
asu¢ GROUP A
ae unused
gl GROUP B
asse o
q86o unus

Topology wovrd {4

[
'l
~
]
by

)

T R P
«% vt ‘.t ) LN
PP R L W R R R

high level veltage

low level veltage

threshold velbage

Sertal control

PiA contrel

Sk PP RPN,

Figure 37 Memory Map of ICA Buffers

) o P S S S A S R R R S .‘1




i
-

Y
>

P
'y

By

.
L W DU S T ST R Y

the data bus at the end of the machine cycle and the edge is delayed rela-
tive to the data. It is possible for the data on the LM bus to change
before the decoded write edge propagates to the selected register. This
problem is circumvented by the use of M29A which produces the write edge

(ie, terminates the write strobe) before the LM cycle is finished.

3.3.2 CONFIGURATION CONTROL

The configuration words control the data type and direction
through the SIO channels. Figure 38 contains a description of the bits
used in each of the two configuration words. The standard configurations
are those in which each channel of the SIO performs the same function.
These include DC and AC analog input and output, as well as parallel
digital input and output. The choice of single~ended versus differential
input and output is determined by the programming of the input multiplexer
address lines (INMUX@-A, INMUX1-A and INMUX2-A) and the driver enable lines
(DVRP and DVRN) respectively.

The non-standard SIO functions are those in which the channels
are not individually programmed the same. These include the serial and
synchro input and output modes. These special configurations are control-
led by M16 and associated logic.

For synchro input, output S1 of M16 is high which results in
inhibiting the drive enable lines to channels &, 1, and 2 of the group.
The DVRP and DVRN lines can be applied to channel 3. This results in an
AC reference being made available through channel 3 while channels @-2 are
set up as single-ended input channels for the three legs of a synchro
winding. Note that channel 3 is forced to a differential output config-

uration independently of the state of DVRN. This allows a full 40 vp-p

115

Ty ——

R N A N i s S S



ACDC
DIV
1114
DVN

IM@, IM1,
IM2

DM@-DM3

FLG

OEN

LF

...........
-----------

i) P LR T W e

R ——

CONFIGURATION WORD A

AD |ACDC | DIV | DVP | DVN | IM2 | IM1 | IM@

Selects between analog (1) and digital (d).

Selects between AC(1) and DC(#).

Thevenin source on (1) or off ().

Positive voltage driver selected (1) or deselected (f).
Negative voltage driver selected (1) or deselected (#).
Select one of eight input modes. Normal operations

utilize single-ended (3) or differential (1) mode.
The remaining six modes are used for test purposes.

CONFIGURATION WORD 1

DM3 | DM2 | DM1 | DM@ X FLG | OEN LF

3elect one of the special configurations: reset (),
test (15), serial-out (8), serial-in (4), synchro-out
(2), and synchro-in (1).

Selects flag (1) or refresh (f) modes during serial
input.

Voltage drivers on (1) or off (f).

Selects between latched (1) and followed (4) modes
during momentary discrete inputs.

Figure 38 ICA Configuration Words

116

. T - .
PA O S S




Ot &)
Ly 3 B D - - -
IR LA L A L R R e e A e R i A e S A TR L PR peeee— - R sl e |

differential output from channel 3 (1f DVRN is programmed low so that the
reference generation section maintains a full 20 vp-p reference) which
makes it possible to drive a wide range of available synchros.
For synchro output the S2 output of M16 will be high. This allows

channel 3 to be configured as a differential channel independently of DVRN.
Normal synchro output would use channels P-2 (single-ended) to drive the
three legs of the synchro control winding (referenced to the group signal

- return) and use channel 3 (differential) to drive the excitation winding
as a two terminal floating load.

For serial input the four group channels are used as follows:

Channel ¢: output (request/lockout)
Channel 1: input (flag/acknowledge)
Channel 2: output (serial clock)

Channel 3: input (serial data)

This configuration is forced by the S4 output from M16 by inhibiting DVRN
and DVRP for channels 1 and 3.

For serial output the four group channels are used as follows:

Channel @#: output (request/lockout)
Channel 1: input (flag/acknowledge)
Channel 2: output (serial clock)

Channel 3: output (serial data)

This configuration is forced by the S8 output from M16 by inhibiting DVRN

and DVRP for channel 1.

117




if 3.4 SERIAL 1/0 DESIGN

o A block diagram of the Serial I/0O section is shown in Figure 39.

This section contains the logic necessary to implement the serial I/0 func-
tion including parallel-to-serial and serial-to-parallel conversion, FIFO

=~ buffering, and parity checking. Appendix B, Section 3-D contains a complete
ey schematic and parts list for the Serial I/0 section.

The function is performed by a combination of discrete logic and a
single LSI programmable Synchronous Serial Data Adapter (SSDA), the Motorola
ES MC6852.

?i The MC6852 circuit provides the functions of FIFO buffering, parallel-
to-serial conversion, serial-to-parallel conversion, and parity checking.
The control of the chip is performed by external logic and internal pro-
gramming. The MC6852 contains a total of 1l internal registeré including

- a 3 byte receive FIFO, a 3 byte transmit FIFO, 3 control registers, a

status register, and a sync code register. The ICA function uses all of

X these registers with the exception of the sync code register.

;; The following discussion will reference the schematic diagram and parts
list in AppendixB, Section 3-D. The discussion will focus on the SERIO function
for Group A but applies as well to the SERIO circuitry in Group B.

. The bit rate is selected through M14 at 200 Kbps, 40 Kbps, 20 Kbps,

C. or 10 Kbps. The address to Ml4 is programmed via the CLKRTPA and CLKRT1A

- lines from the Group A ADCC logic. The clock rate selection is as follows:

- Bit Rate CLKRT@A CLKRT1A
. 200 Kbps 1
- 40 Kbps 1
20 Kbps 2
10 Kbps 2

- - W

DR

. 118

LTI S ENE. G T R TR DALY Bt Ve WU WP, BT T S Sl D LIPS S YR IP UL UL 1 G WD D S U P B




S3NN
O/1 viN3s

$

-

uoFlIoas /I TeTFIaS 333 jo weade1d Noo1g 6€ 2andTd

—< | INDOM
—< ¢ ANOGM
_ < d1S/¥1S
quMIST
Y
¥ILNNOD q0utN0d | | NOWD3MES| | an
18 ONINIL 8 vy [ swmx._w
8 QuOM INVHSAONVH %2010
W00 IVINIS
HOV/913 >
w19| [0
¥01/034 = P
2
(€ NI9IG) NI WVIIS——— ©
wT J081NOD */y
(€ 1N0SIA) 1NO Vi3S «+—
W

sng .

viva Vvl

119

....4
K
" 4
A
%
.~.IJ
N
....._
t. .J
... o

-n
- -4

NI TP RS I SR S )

ST
.




The number of bytes of data to be transferred is programmed through
the WDCNTPA and WDCNT1A lines. These lines originate in the Group A ADCC

logic and are applied to M1l in the SERIO section.

Words WDCNT@A WDCNT1A
1 @ ¢
2 ¢ 1
3 1 )

The SERIO circuitry can operate in three modes:

1) Output Mode
2) Input, Refresh Mode

3) Input, Flag Mode .
These modes are discussed below.

3.4.1 SERIAL OUTPUT

The serial I/0 circuitry transmits synchronous serial digital
output data in this mode. The circuit can be programmed to output 1, 2, or
3 bytes of information during a transfer. The transfer is initiated by
the LM by raising the STR/STP line. This raises the REQ/LOK line to
the subsystem. If the subsystem is able to accept data it responds by
raising the FLAG/ACKnowledge line (DIGIN1) to the ICA. This initiates the
transmission of (N*9) clock pulses to the subsystem where N is the number
of words programmed for transmission. The last bit transferred is the
parity bit for the last word. This bit is checked in the subsystem at the
last falling edge of the clock and the parity information is used by the
subsystem to set the final state of the FLAG/ACK line. The LM inspects
the End of Transmission (EOT) bit to determine when the transfer has been

120

. - —— R T T T T e e P ¥ W = — =¥ v =
T — At St e S T R N R T R e T T S e N e A S e
e T LT s TR BT R DGR T e R S e Lo e




L o
NN
PR A A
PRI

---------

completed. The LM can then determine the state of the FLAG/ACK line and
finally lower the REQ/LOK line to the subsystem. If an error occurred the
LM can take appropriate action. The serial data originates at pin 6 of Ml

and is buffered through the appropriate signal I/0 channel to the subsystem.

3.4.2 SERIAL INPUT-REFRESH MODE

The refresh mode is one of two input modes provided by the ICA.
This mode allows input to take place under control of the ICA through re-
quests on the REQ/LOK line. The data is transferred to the ICA and is
received by the FIFO memory in the MC6852. The process is similar to the
output mode in that (N*9) clock pulses are provided by the SERIO circuit
and the transmission is not completed until the LM has determined if a
parity error has occurred. Such error is detected by the LM by reading
the received words and their associated parity bits out of the FIFO memory

of the MC6852.

3.4.3 SERIAL INPUT-FLAG MODE

The flag mode allows the interfaced subsystem to initiate a data
transfer to the ICA., The SERIO circuitry must first be programmed for the
expected number of data bytes and the clock rate to be used with the trans-
fer. The transfer process is initiated when the subsystem raises the
FLAG/ACK (DIGIN1) line to the ICA. This action causes the REQ/LOK line to
the subsystem to be raised in response and allows the programmed number of
clock cycles to be generated and sent to the subsystem. The clock is frozen
in the middle of the last programmed cycle so that the LM can check on the
parity bit state for each of the received words in the FIFO memory of the

MC6852. 1If the transmission is correct, the REQ/LOK line is lowered to

121

PO Y VO ST S -l m A 'hE a ma & mieNa - . .




the subsystem by lowering the ERR line in the SERIO circuit. The last
clock edge is then produced through the CLKLOW line from the ICA and the
subsystem terminates the transmission cycle. If an error occurs during
reception, the CLKLOW line is lowered while the REQ/LOK line is still high
and the subsystem will be ready to retransmit the message.

The parameters and control bits required for serial transmission/re-
ception are specified in the serial control byte of the ICA configuration
buffers. This byte is set up in the data register of a Peripheral Inter-

face Adapter (PIA) and is illustrated in detail in Figure 40.

122




SERIAL CONTROL

SS | ERR |FLGR JWDC1 | WDC§ | CLK1 | CLK§ | EOT

S§S - This bit controls the STR/STP line of the SERIO
circuitry. It is used to initiate (1) or terminate
(p) the serial reception/transmission.

ERR - This bit controls the ERR line in the SERIO circuitry.

FLGR - This bit controls the serial input mode: Flag (1)
or refresh ().

WDCH,- These bits control the number of bytes of data to be
WDC1 received/transmitted.

CLK¢,- These bits control the clock rate used for serial
CLK1 reception/transmission.

EOT - This bit indicates if the sgerial transmission is
complete (1) or not (P).

Note: The CLKLOW line in the SERIO circuitry is controlled by
the CB2 peripheral output line of this PIA. CLKLOW is
normally low and is set high to provide the last clock
pulse, after which it is brought low again,

Figure 40 Serial Control Byte
123

a T T W LIPS et A el iia aamh e latatataaal



-
OEREREX

SECTION 4

SUBSYSTEM INFORMATION CHANNEL

The Subsystem Information Channel (SIC) is a distributed memory system

that stores information pertaining to devices connected to a computer sys-

tem. The information for each device is stored in an electronic nameplate

physically located on that device. Thus it becomes simple to change a

system's configuration, since at initialization the processor may interrogate

the SIC to determine which devices are present and establish the interface

requirement for each device. The information stored in a device's nameplate

includes:

The SIC

Device identification,

Interface characteristics,

Data conversion programs,

calibration programs,

Diagnostic programs,

Failure/maintenance records written when in previous use.
consists of two major types of components (Figure 41 ):
Electronic Nameplate (NP): The information storage unit
located on the peripheral device,

Nameplate Interface Controller (NIC): An interface module

which resides in the processor chassis and enables com-
munication between the processor and nameplates.

Many subsystems consist of several modules, each with specific inter-

face requirements. In this case each module may be equipped with an

electronic nameplate containing information specific to that module. All

124

MR A Sru |
PN T




{ouuey) uoTjEWIOJU] waysdAsqng ayl Tv 2Indry "

g 40SS3O0Ud
~ ]

»

| W31SASSNS ¥
._ ST 8

125

v..A .,L
, .. -
B SOA
i3 . -.
. L
. ’ ;
[ .
.‘n .
-
. ;
2
‘~
.
«... ....
onc- v, -L
] 5
* ! ~
« 4 '
.
y .
e :
x R
. ‘ .
- .0
. g
e ? ¢ e
y o o
. .
by # ‘e
4
W‘
F
by, "
/ &
P, ._
L/ . o
4 7 ¥
p, 1
[} i

. e ‘e
PR




muvyer

lectronic nameplates within a subsystem are '"daisy-chained" along an SIC
bus.

The Subsystem Information Channel is viewed as a distributed memory by
programs running in the processor. Programs may ''read" the nameplate's
memory through the SIC by using SIC commands.

The following section gives an explanation of how to use the SIC and
later sections discuss the design of the parts of the Subsystem Information

Channel.

4.1 USE OF A SUBSYSTEM INFORMATION CHANNEL

This section describes the control and communication protocol utilized
by the subsystem information channel to access any of its electronic name-
plates. The communication protocol and its use are presented first. Use
of the control, status and data registers of the nameplate interface
controller is presented next. A structure for storing the information re-

siding in an electronic nameplate is presented at the end of this section.

4.1.1 ELECTRONIC NAMEPLATE COMMANDS

Control of a nameplate by a processor is accomplished through the
use of electronic nameplate commands. The nameplate receiving the command
sends a specific response to the processor acknowledging that the required
action has been performed. The nameplate commands may be grouped into four

functional categories:

® Nameplate selection commands,
® Read memory commands,
e Write memory commands,
® Nameplate diagnostic commands.

126

acal




LRt an 2 4
>

SEN el

Vol ot .:;IE pEONCCEOTE

Ty
L

AR _-'_~'_1

k|

B 89 « RSO

o e

P e S e e T " Mg L T e T

4.1.1.1 Nameplate Selection Commands

The nameplate selection commands are used to establish processor

communication with one of several nameplates. The two commands 'select

level § NP" and "select next NP" allow a program to sequentially select
nameplates on the SIC bus. This procedure stérts with the nameplate near-
est to the processor which, by position, is assigned level f. Once a
nameplate is selected, it may be assigned an eight bit address which may

be used for subsequent random nameplate selection. This is accomplished by
the commands "assign NP address" and "select NP by address". During
initialization the sequential selection mode is used to assign nameplate
addresses. Thereafter a particular nameplate is selected usually by its
address.

The identity of the nameplate selected can be determined at any
time through the use of the command “read selected NP's address". Absence
of a response to this command indicates that no nameplate is selected.
Each nameplate sets its address to an invalid address (-1) whenever it is
reset. A nameplate can be reset by the processor via the nameplate inter-
face controller or whenever the nameplate's power or clock is absent.

Only one nameplate can be selected at a time. If a nameplate is

selected and a “"select level § NP" command is issued, the selected nameplate

will deselect and the level §§ nameplate will become selected and respond
to the command. If a nameplate is selected and a "select next NP" is
issued, the presently selected nameplate deselects, and the next nameplate
on the SIC bus (further from the processor) becomes selected and responds
to the command. Note that the "select next NP" command has no effect if

no nameplate is selected. If a nameplate is selected and it is desired to

127




select another nameplate using the "select NP by address" command, the first
nameplate must be deselected using the command, "deselect NP", and then the
desired nameplate may be selected.

A bit in the nameplate status byte (the first byte of every re-
sponse) indicates if the responding nameplate is the last nameplate on the
SIC bus (i.e. the farthest from the processor). If the last nameplate is
selected and a "select next NP" command is issued, the last nameplate will

deselect and no nameplate will be selected thus no response will be issued.

4.1.1.2 Read Memory Command

Once an electronic nameplate is selected, its memory may be read.
The nameplate's memory consists of read only memory used for storage of
subsystem interfacing information and read/write memory used for storage
of subsystem performance records. The command "read selected NP's memory"
allows the processor to transfer up to 256 bytes of data from the nameplate's
read only or read/write memory. This is accomplished by sending with the
command the starting address and number of bytes to be transferred. If
more than 256 bytes are required, additional read memory commands may be
issued each with a new starting address. Only if the starting address and
ending address (i.e. starting address + number of bytes requested) are
within the nameplate's memory boundaries will the data transfer request be
honored. Otherwise the nameplate's response will indicate an invalid

address status.

4.1.1.3 Write Memory Commands
Information may be stored in a nameplate's read/write memory

through the use of the "write NP memory" command. For the sake of security,

128

........
..................




a write command to a nameplate will not be honored unless it is preceeded
by the "NP write enable" command.
Data written into a nameplate's read/write memory is stored in
records. Each record consists of a 16 byte block. The starting address
of each record, sent with the write command, must start on a 16 byte
boundary (i.e. the last hexadecimal digit of the address must be zero).
. The last two bytes of each record are used to store a record checksum and
a record terminator. These bytes are inserted by the nameplate logic when
the record is written. Thus the maximum number of data bytes that can be
written into a record is fourteen. The most significant bit of the first
byte in each record is utilized as a record validity indicator. Modifying
this bit is the last operation performed in response to a write command.
This bit when set to zero indicates that the record is properly written.

Each nameplate may contain sixteen such written records at any
time. These recor&s are written in non-volatile memory (i.e. the nameplate
may be powered down and the written information will be retained). The
starting address of the first unwritten record space (i.e. the unused
record space with the lowest address) may be obtained by using the command
"next available record address'. An address of zero returned in response
to this command indicates that the nameplate's read/write memory is full.

A nameplate's read/write memory can be erased through the use
of the "erase read/write memory" command. The erase command is in the
write category of commands and therefore must be preceeded by the "NP write
enable" command. The present implementation of the electronic nameplate
does not support the actual erasure of memory. Receipt of the erase com-

mand is acknowledged by lighting the nameplate's erase indicator. The

129

.........




1‘1-.---.vT

ra: T
..,,uu,%TE.I,,

et ta et -..'.'u'v

.

.

nameplate's read/write memory must be removed from the nameplate board and
exposed to ultra-violet light for fifteen minutes in order to be erased.

Execution of the write (or erase) command requires approximately
one second. The nameplate Qill acknowledge receipt of these commands
immediately and will proceed to execute the write (or erase) action. Dur-
ing this time only the select, deselect commands and the "read selected NP
address" command will be accepted and executed. Other commands will be
rejected and the response will indicate "NP busy". However, if it is de-
sired to terminate a write (or erase) prior to its completion, the command
"abort selected NP" may be used.

The nameplate should be disabled from writing (or erasing) as
soon as the desired write (or erase) has been completed. This action will
avoid accidental modification of the read/write memory. The write disable
is accomplished through the use of "NP write enable" command with the

enable/disable flag not equal to one.

4.1.1.4 NP Diagnostic Commands

The last group of commands cause the nameplate to run a self-test
program. When the command "run NP diagnostic" is issued, the selected
nameplate will respond immediately and start execution of its diagnostic
routine. The diagnostic routine requires approximately 1/4 second of exe-
cution. During diagnostic execution only the select, deselect commands
and the "read selected NP's address" command will be accepted. Other
commands will be rejected with a status of "NP busy'". Execution of the
diagnostic routine may be prematurely terminated with the "abort selected
NP" command. When the diagnostic is completed, the results may be read by
issuing the command ""read NP diagnostic results". Figure 42 illustrates

130

o« > I B “ . P T L P . . . o . N .
ol Ty W A S P W, P W A S R o S YT o PSR P ISP WS S et e o ia e a




.............
...........................................

-----
......................

First Result Byte

b7 b6 b5 b4 b3 b2 bl b
DCG [ROME | & |RECE| # |RAME ITIME | #

DGC: Diagnostic completed

ROME : ROM data errors

RECE: Read/Write records in error
RAME : RAM errors

TIME: Timer errors

Second Result Byte

b7 b6 b5 b4 bl bg

b3 b2
ROM4 FROM3 § ROM2 | ROM1 —FRl;EE— REC —

ROM4 : ROM number 4, address (58@P-5FFF)ig, data errors
ROM3: ROM number 3, address (5@P#-57FF)1¢, data errors
ROM2: ROM number 2, address (48@f-4FFF)16, data errors
ROM1: ROM number 1, address (44¢@-47FF)1¢, data errors

FREE REC: Number of read/write records still available

NOTE: A one in the associated bit position indicates the
condition is true.

Figure 42 NP Diagnostic Result Data Bytes

131




-,

the format in which the results are returned.

4.1.1.5 Command and Response Structure

The structure of all valid nameplate commands is presented in
Table 16. The same table also identifies the format of the response to
each command. Commands and responses have different numbers of bytes
depending on the amount of information required by the action requested.
Figures 43a and 43b show the message structure of various commands and
associated responses in terms of their byte contents. Note that the name-
plate status is always the first byte of the response. When an error is
encountered in the execution of a command the second (and last) data byte
of the response will diagnose the cause of the error. The structure of

the status bytes is presented in Figures 44a and 44b.

4.1,2 NAMEPLATE INTERFACE CONTROLLER REGISTERS

The nameplate interface controller is the controller circuit,
residing in the processor chassis, through which communication with name-
plates takes place. As viewed by the processor, the nameplate interface
controller appears as a set of memory mapped control, status and data

registers.

4.1.2.1 SIC Status and Control Registers
One of these registers, the SIC status register, reflects the

status of the subsystem information channel as shown in Figure 45a . Bits

7, 4 and 3 reflect the signal level of specific SIC hardware control lines.

Bits 2, 1 and @ are outputs of the SIC clock divider circuit. Consecutive
reads of the status register should yield a changed value for bits 2, 1
and § if the SIC clock 1s functioning correctly. This value changes

approximately every 13.1 microseconds.

132

E O A

cavm s o e - .
R e e R A I L NI S . R s R R . . - . . . . e e e
L PP, PR AN T RN RN MR MRS T VI IPUC I DAL IPULIPUOPT W S ST ELAr T ST Ut ST TN NPTt R PG S

e Ao B




T

pe g B JEa
Fele o
5 LS

'D

Ch ™00k

SRR £ AR

"-ﬁ m,,

PR S
S N

Table 16
NAMEPLATE COMMANDS

- T — %~ - = v -

COMMAND RESPONSE
Instruction Data Status Data
1. Select level N/A NP status NP address
g NP
2. Select next NP N/A NP status Newly selected
NP address
3. Select NP by NP address NP status NP address
address
4. Deselect NP N/A NP status NP address
5. Assign NP Address to be NP status NP address
address assigned
6. Read selected N/A NP status NP address
NP's address
7. Read selected Number of NP status Number of memory
NP's memory memory bytes bytes, starting
wanted (0=256), memory address,
starting memory memory data
address
8. Write enable/ Enable/disable NP status NP address
disable flag (Enable=1)
9, Write memory Number of data NP status Starting memory
data bytes, starting address
memory address,
Data to be
written
10. Next available N/A NP status Address of next
address to be available write
written memory record
11. Erase read/ N/A NP status NP address
write memory
12. Run NP N/A NP status NP address
diagnostic
13. Read NP N/A NP status Diagnostic
diagnostic results
results
14. Abort selected N/A NP status NP address
NP
133




WNSAD

v.ivd

z:mgw|_

v.ivd

aan3onilg 931Lg asuodsay puewwo) HIS qgy aandry
WNSHD Z9VId 19VIQ SNLVLS
Viva T4aV Wi miav W] [ 10 aixe SNLVLS
WNSYD Tiav waw] [av waw SNLVLS
WISHD ivisda SNIVLS
[wasxo | [Tuav an | SOLVLS
WISHD UGV dN SNIVLS
2an31oni3g 23dg puewmo) J[S egy 3anB1yg
VIvd T4AV WIN HIQV WaK 1D aLAd and
ﬂnudemmnwld Taav_WIn HIav Wan D4 alig anDd
ANSAD _ m‘ viva _ —‘ azu\x|~
WASYD and

€1
L
01 ‘6

10119 Aue

Asnq 4N

laqumy puewwo)

6

L
8 ‘s ‘s
ASEN ¢

Zr ‘1t ‘ot
9 ‘¢ ‘T ‘1

J3uamy pueumo)

PP S SO U N

134




b7

b6 b5 b4 b3 b2 bl bo

NPB | LNP § WRE | DLA | WED { DT1 | DT@

NOTE:

Command error

NP is busy

This NP is the last NP on the SIC bus
Error occurred on last write

Deselect acknowledge

Write enabled/disabled flag (enabled=1)

DT1, DTP: Indicated type of data in response as follows:

DT1 oTg Response Data

'] g Nameplate Address

g 1 Diagnostic Results

1 2} Memory Address Only

1 1 Memory Address and Memory Data
X X Error Diagnostic Byte

A one in the associated bit position indicates condition
is true.

Figure 44a Nameplate Status Byte

135




b7 b6 b5 b4 b3 b2 bl by

i}
‘Dln

INC | INA | INW )} CER ] INS [} # A

I AN )

INC: Invalid command

INA: 1Invalid memory address (either starting or ending address)
o INW: 1Invalid write (erase) request, write not enabled

% CER: Communication error

& INS: Another NP requested while this NP is still selected

ij NOTE: A one in the associated bit position indicates the
: condition is true

PIRE

-
P -
.
'
-
"
-
v
-

Figure 44b Error Diagnostic Byte

136

b P ISP AP PO T SR PR Lol




b7 b6 b5 b4 b3 b2 bl b
PWR | § g P nr]RrRCccL2]cl]cg

PWR: SIC power status (1=SIC power not present)
NPR: NP reset line level

R/C: RESP/CMD line level

CL2, CL1, CLp: SIC clock status bits

NOTE: A one in the associated bit position indicates the
condition is true

Figure 45a SIC Status Register

b7 b6 b5 b4 b3 b2 bl bg .
PWO [} 1 1 NPR 1 1 PIE XXX3

PWO: Power outage (or SIC disconnection) since last read of SIC
status register

i NPR: NP reset control

By PIE: Power outage (or SIC disconnection) interrupt enable

NOTE: A one in the associated bit position indicates the
: condition is true

Figure 45b SIC Control Register

AL A OCOENOR
[ N A PRI

S

137

-4

“




Figure 45b illustrates the SIC control register. This register
F! is used primarily for initializing the SIC status register and for resetting
all nameplates. The simultaneous reset of all nameplates is accomplished

by setting (to one) bit 3 (NPR) of the control register. As long as the

NPR bi. is set, all nameplates will remain in the reset state. To enable
the nameplates after a reset is performed, the NPR bit should be reset (to
zero). The processor should wait approximately 40 milliseconds after re-
moving the reset signal before attempting to access a nameplate. This delay
is required to allow the nameplates to initialize.

The PWO bit will be set in the SIC control register whenever the
subsystem information channel loses power as a result of power supply
malfunctions or breaks in the SIC bus (e.g. on reconfiguration). The PWO
bit will stay set even if power returns to the SIC bus. This bit will be
cleared when the SIC status register is read. The PWR bit (bit 7) of the
SIC status register indicates the status of the SIC power at the time of
the read. Thus if power goes down and returns between readings of the SIC
status register, the PWR bit of the SIC status register will be zero in
both readings. However the PWO bit of the SIC control register will be set
to one indicating that a power loss has occurred. The SIC control register
should always be read before reading the SIC status register since reading
the SIC status register clears the PWO bit of the SIC control register.

An interrupt to the processor may be generated when the PWO bit is set to
one. The PIE bit (bit #) of the control register controls the enabling
and disabling of this interrupt.

The SIC status and control registers should be initialized in the

following manner:

138




R RS o S - - S A e St B i 2 o)
. N -

1) write (3A)16 to the SIC control register,
i1) write 665)16 to the SIC status register,
1ii) write (36)16 to the SIC control register,

iv) read the SIC status register.

After this procedure is performed the SIC status and control registers' bit
functions are as indicated in Figures 45a and b.

Additional information on the functions of each bit in the SIC
control and status registers is presented in the nameplate interface con-
troller hardware schematics (AppendixB, Section 4-A and the data sheets on the

Motorola MC6821 peripheral interface adapter.

4,1.2.2 SIC Communication Registers

The sending commands and receiving responses from nameplates is
accomplished with the aid of two registers: the SIC communication control/
status register and the SIC communication data register. Figures 46a and
46b depict the format of these registers.

The SIC communication control/status accepts controls when written
and provides communjication status when read. The R/C bit (bit 6) of the

SIC communication control register controls the direction of the data on

the SIC serial data bus. The SIC is enabled to send a command to the name-
plates by writing a zero into the R/C bit. The nameplates are enabled to
respond to a command when the processor writes a one to this control bit.
Two other important bits, RIE and TIE, are used to enable receiver buffer
full and transmitter buffer empty interrupts respectively. To initialize
the SIC communications, the value (ﬂ3)16 should be written into the com~

munication control register.

34

-
L
Vo
‘.’4!
ou
I".
Ve
éi
-
Ve
|-~'
l- .
Q'.
.
ﬁu.
o
-
b‘-

.
.

139

(.

L = JRrhith

L o o




MM e i St Seuth A e Jent e e e

.......................

Control Register

b7 b6 b5 b4 b3 b2 bl b
Address:
RIE | R/C| TIE 1 ) 1 [} 1 XXX 4

(write only)

RIE: Receiver data available interrupt enable
R/C: RESP/CMD enable control (1=RESP)
TIE: Transmitter empty interrupt enable

NOTE: To reset communications, write: ¢3.

Status Register

b7 b6 bS b4 b3 b2 bl bE
" Address:
IRQ 12} OVR | FE }R/C g TXE 1 RDA XXX 4

(read only)

IRQ: Interrupt present

OVR: Receiver data overrun error

FE: Receiver data framing error
R/C: RESP/CMD enable status (1=RESP)
TXE: Transmitter data register empty
RDA: Receiver data available

NOTE: A one in the associated bit position indicates the
condition is true

Figure 46a SIC Communication Control/Status Register

140

BT P G T S SRR
\d « - - o N e e T e e e B e S e e T e T T s T et e
. . I A S A R T P I R

RN .a:l_'-l:m_;_.a_t:i




- . et
s . a - J
L Sl Y S Sl e

Receive Register

b4 b3 b2 bl bf
DATA BYTE

—

b7 b6 bS

Transmit Register

b7 b6 b5 b4 b3 b2 bl bg
DATA BYTE

NOTE: Data is in 8-bit bytes, no parity.

Figure 46b SIC Communication Data Register

141

...................
-----------------------

Address:
XXX S5
(read only)

Address:
XXXs

(write only)




Reading the SIC communication control/status register will yield
the SIC communication status as indicated in Figure 46a .

Command or data to be transmitted to a nameplate must be written
into the SIC communication data register (Figures 46b ). Transmission to
the nameplates will only take place if the R/C control bit is reset (i.e.,
command enabled). The response from a nameplate is read from the SIC
communication data register (Figure 46b). No response will be received
unless the R/C control bit is set to one (i.e., response enabled). The
processor should delay approximately 2.1 milliseconds after transmitting
the last byte of a command before enabling the response (i.e. setting the
R/C control bit to one). This action will assure that all bytes sent are
received by the nameplates.

A more detailed explanation of the functions of each bit in the
SIC communication registers is provided in the nameplate interface control-

ler hardware schematics (Appendix B, Section 4-A) and the data sheets on the

Motorola MC6850 asynchronous interface adapter.

4.1.3 NAMEPLATE'S DATA STRUCTURE

The electronic nameplate can be viewed as a component of a dis-
tributed memory system. The distributed memory (i.e., the nameplate's
memory) is used to store information related to the subsystem on which the
memory is attached. The design of the electronic nameplate places no
restriction on the data structure of information stored in the nameplate's
read only memory. The nameplate's read/write memory is used for storing
subsystem performance information. The read/write memory is organized in
terms of 16 byte records. Fourteen of the bytes in a record may be used
for data storage and are not restricted in format. A restriction is placed

142

R .. - e T e S
PP Ry S WPy P PR N S S Y . PO P,




e

«
.

SANED
ety

)
a .l

1

on the most significant bit of the first byte of each record. This bit will
be set to zero by the nameplate logic if the record is written correctly.

The nameplate's memory format allows a variety of data structures
to be used for storage of subsystem information. 1In order to facilitate
information retrieval, the organization of subsystem data within a nameplate
should have a well defined structure. The rest of this section will dis-
cuss the nameplate's subsystem information storage structure for implemen-
tation of a subsystem information channel.

Each nameplate will have a directory in read only memory identify-
ing all information structures present in the nameplate. The format of this
directory is illustrated in Figure 47, The directory of any nameplate
starts at a fixed (known) memory address. The different information modules

which a nameplate may have in read only memory include:

® Subsystem identification,
® Subsystem interfacing characteristics,
e Subsystem I1/0 routines,

e Subsystem diagnostic/calibration routine.

The presence of each of the above modules in a nameplate's memory will be
identified with a corresponding entry in the directory.

The initial segment of each information module contains a header.
This header provides a physical description of the module. The information

in a header includes:

o Identification of the module,
® Size of the module,
® Address of the first executable instruction,

@ Checksum for the module.

143

NS Lo . N
- e e e I




...................................................................

Fixed Address | Nameplate (i.e. Subsystem) Identification
Directory ID Code
Number of Bytes

= in Directory =
Entry #1 ID Code
All Entries Entry #1 Starting
Have Same f- : Memory Address n
Form
_ Number of Bytes

in Entry #1

At
-

)
Last Entry Read/Write Memory ID Code
L Starting Address of -

Read/Write Memory

Number of Bytes
in Read/Write Memory

Directory Checksum

Figure 47 Nameplate Directory Structure

144

,,,,




,,,,,,,

The last entry in a nameplate's directory contains the starting
address and size of the read/write memory area. The format of a subsystem

performance record written in the read/write area is shown in Figure 48.

The first byte is an identifier for the type of data in the record. Typical

record types include:

® Subsystem failure reports,

e Subsystem repair reports,

" ' e Subsystem calibration results,

e Subsystem diagnostic results.

The eight unspecified bytes in a record may be used to store information

3 relevant to the action causing the recording (i.e. record type).

4.2 ELECTRONIC NAMEPLATE DESIGN

4.2.1 HARDWARE DESIGN

The design of electronic nameplates for the subsystem information
channel is based on a Motorola MC6801L1 processor. The electrical specifi-
cations for the nameplate are presented in Table 17. One should observe
that power for all nameplates is supplied by the SIC bus. Therefore the
SIC power supplies must be sized to handle the maximum number of nameplates

for a given application.

Theory of Operation

A description of the nameplate's operation can be made in terms
of the block diagram shown in Figure 49. The detailed schematic drawings
for the nameplate are presented in Appendix B, Section 4-B.

The majority of the logic functions required from the electronic

145




- s T RTINS ~

Bl

RCV| Record ID Code
Number of Valid Bytes

p— Julian Day ha
r- Time in Hours, Minutes -
3 oy
| Record Data -

(8 bytes max)

|
]

{
] 1

Record Checksum

Record Terminator

RCV: Record Validity Bit

Figure 48 Subsystem Performance Record

146




-------------

Table 17

ELECTRONIC NAMEPLATE SPECIFICATIONS

CHARACTERISTIC

SPECIFICATIONS

Power Requirements

Input Signals

Output Signals
Operating Frequency
Operating Temperature
External Interfaces

+5Vdc  £5% @ 1.2 Amps
+25Vdc 5% @

TTL voltage compatible
TTL voltage compatible
614.4 K Hz

0 to 70°C

SIC Bus

R 8t

147




RATARERORAR] N i RERIRPRI R N U
....... J SRIN

Y ¢
OV Ry Ry REUL Y

.
LR}
a2

T wexSerq }oorg djerdoweN dSTuoxlda[g 6% 9andiy N
. \ 100 ALINOIN y
j 21901 ;
, ALHORd k— NI ALIHOINd “
dN 1SV7 N
8 ‘
$a-2a ,
g 1089 OW NI NNOJSIO
am-L0M r—-———=—- oot =" B )
OY.LNOD NS _
AHOW3W 3ISVYN3 m | WYY | 100 NNODSIQ
31IHM |@vm-2vMl /3] 14M I |
- o— 0/ 1 S31A8 |
K __ T e IvLIolg 82! _
® o
] lig 8 | 3 .
7_ o _ 13539 “
. 1n0 Y10
13539 J_ /dN H3MOd |
4\ ,
— ,,.
8 | 1) 2¢
0a-20 i :
| 4 awd ],
8 1D | 193130 :
S 3N 1S QW
0a-20 300030 [¥a-2a/8v-Lv T 1S OMO fTawosasay
g " +0089 —+
AHOW3W
HO1VT i
v -9y S31auN3 "Bv-SIv oul “INNWNOD ¢ 7 Su3ang Vi3S
: | wias | | |vivao wiess
|||||||||||||| J
sng JIs




ARG Paar ur
LT T f ST
St e A

LR AN

Vg

A
.. N

W

nameplate are performed by a Motorola MC6801L1l processor. This processor
is configured in its expanded multiplexed mode of operation and includes
the following operational elements:
e 6800+ CPU: Motorola 6800 processor with an enhanced
instruction set,
e 128 bytes of RAM memory,
e serial transmitter/receiver communication device,

e free running timer which can output software controlled
pulses and also measure times between input transitions,

e 8 bits of digital I/O.

Detailed specifications for the processor are provided by Motorola documen-
tation on the MC6801L1.

All external signals required by the nameplate are provided by
the SIC bus. These signals are shown on the left side of Figure‘ 49, The
function of each major component identified in the nameplate block diagram

will be described in the remainder of this section.

Reset Circuit

When power is turned on or the SIC clock recovers from an inter-
ruption, this circuit causes the nameplate logic to reset. The reset
signal goes false approximately 30 milliseconds after the power and clock

are both present.

Serial Data Buffers

This logic circuit uses the RESP/CMD SIC bus signal to control

the direction of data flow to or from the SIC simplex serial data line.

149

W PSP S - N . . .
vl . UL SRR, Y 4 (U T W Y S T e T




M AT A Ao James Aaai o S p Sl da=m e LR e it MR i e A S S I e i Y e S RS

ARV IR 2R PR Val U T . v T e - B T R L B R

Command Detection

This circuit detects when the RESP/CMD signal goes low indicating
the start of a new command from the system processor. This negative going
edge is latched, causing an interrupt in the 6801 CPU. The 6801 CPU clears

the interrupt through one of its 8 digital I/0 lines.

Address Latch and Decoding

The expanded multiplexed mode of operation (mode 1) of the 6801
multiplexes the lower 8 bits of address with the corresponding data bits.
Therefore the 8 lower order address bits must be demultiplexed with an ex-
ternal latch. Address lines Al5 through A5 are then applied to a decoding
ROM that generates the chip select signals for various nameplate memory

components and control devices.

Write/Erase Control

This logic provides the capability to write 256 bytes of data on
an EPROM. This logic contains an 8 bit latch for holding the address and
an 8 bit latch for holding the data to be written. It also provides the
write control required to tri-state the EPROM from the nameplate's data and
address buses during programming. The write control also gates the MC6801
timer's 50 millisecond pulse and switches the +25 volt power as required to
program the EPROM.

The EPROM implementation of the read/write memory does not permit
electrical erasure. The erase control utilizes the 6801 timer to generate
a one second erase pulse. This pulse, in the present implementation, lights

an LED which is used for command verification.

150

PP UYWAY W




R
el
U
A
Y
1:'
I.“
[

L&

Priority Logic
The priority logic "ANDs" the PRIORITY IN signal from the SIC bus

with the signal THNPSELN (this nameplate is selected), an output signal

from the 6801 digital 1/0 port, to form the SIC bus signal PRIORITY OUTN.
The SIC bus connects to the nameplate in such a way that the PRIORITY OUTN
signal of one nameplate becomes the PRIORITY IN signal of the next nameplate
farther away from the system processor. If a nameplate is selected, its
THNPSELN signal is low. Thus the PRIORITY IN signals of all nameplates
farther away from the processor are low.

A line of the 6801's I/0 port is used to allow the nameplate's
software to test the value of its PRIORITY IN signal. When a nameplate's
PRIORITY IN signal is low, it indicates that some nameplate closer to the
system processor (i.e. a higher priority nameplate) is selected. The name-
plate sensing a low PRIORITY IN has lower priority and therefore must
function accordingly.

Another line of the 6801's 1/0 port, the LAST NP signal, is
checked by the nameplate's software to determine if it is the last name-
plate on the SIC bus (i.e. the farthest from the system processor). The
nameplate's PRIORITY OUTN signal passes through a current limiting resistor
before it is applied to the SIC bus. The LAST NP signal is connected to
the PRIORITY OUTN signal on the SIC bus side of this resistor. For all
nameplates that are not the last on the bus, the signal LAST NP follows
the signal PRIORITY OUIN. The SIC bus terminator, placed after the last
nameplate on the SIC bus, jumpers the PRIORITY OUTN signal to the SIC +5
volt power line. Thus in the last nameplate, the signal LAST NP will be

high even when the inputs to the priority logic circuit (THNPSELN and

151




WU e TR LT

PRIORITY IN) dictate the signal should be low. The nameplate's software,
by monitoring the inputs to the priority logic and this LAST NP signal, can

determine if it is the last nameplate on the SIC bus.

Status Display

These buffers are used to drive LED displays that indicate the
nameplate status. Some of the displays indicate the internal status of the
6801 and its software. The remaining LEDs are driven by important hardware

signals. Table 18 1lists the status identified through LED displays.

SIC Bus
The SIC bus provides the medium for a processor to communicate
with one or more nameplates. Control of the bus by the processor is
achieved with the nameplate interface controller residing in the processor.
The SIC bus also supplies power and the clock for tﬁe nameplates. When
multiple nameplates are used they are 'daisy chained" along the SIC bus
as illustrated in Figure 50.

The SIC bus must be properly terminated at the last nameplate.
This termination consists of two jumpers connecting the bus signals
BPRIORITY and BDISCONN to the +5 volt power line. The BPRIORITY jumper is
used to indicate this nameplate is the last one on the bus. The BDISCONN
jumper causes the corresponding bus line to be held high at the nameplate
interface controller. This will remain true until the SIC "daisy chain"
is opened. The nameplate interface controller uses this signal to detect
when a nameplate (and corresponding subsystem) has been replaced or recon-

figured., Table 19 identifies the signals comprising the SIC bus. Appendix

B, Section 4-B contains detailed information on the cable implementation.

152




......

Table 18

NP STATUS DISPLAY

LED NUMBER* STATUS DISPLAYED

NP is busy

This NP is selected

SIC RESP/CMD bus line level (CMD=0ON)

SIC SERIAL DATA bus line level

EPROM write strobe

EPROM simulated erase strobe

SIC PRIORITY IN bus line level (High=on)

NP Diagnostic is executing

0 3 O U N N

*LED #1 is the left most LED, LED #8 is farthest to the right.

153

CFRF TN T T e T TR




a3

-~

S e e T e eg—"
. 5 T e

SUOT3IJaUUO) sng IS

JINAON WILSASBNS

AN

'lu' -—— - -

mO.—.<z__zmw._. —— —_

1{/al: o]

D AP I W

0S aan3ty

154

40SS300ud




AT AN AN Sy A O VA v - ¥ SRR N
'S
3
e Table 19
3
( SIC BUS SIGNALS
SIGNAL NAME FUNCTION
oy B$2 CLK SIC system clock -2.4576 MH:z
-: BPRIORITYN Nameplate priority status line
R BSERIAL DATA Serial data communication line
Z BRESP/CMD Response/command enable line
,,. BDISCONN SIC reconfiguration detection line
5 GROUND SIC ground (2 lines)
E:Zj- +5V SIC +5Vdc logic power (2 lines)
:’*'f +25V SIC +25Vdc EPROM programming power line
»

155




ooy e N -
B e I T A h'\’u‘.\..!,l."\-hnh LY L

- A T Y A Y 2 v -~ T, M
" . L

........ e R N L T N T o i R e A ae g -

~ e e s

4.2.2 SOFTWARE DESIGN

The software of a nameplate consisfs primarily of one program,
entitled NPPROG, which executes as a continuous loop. Whenever a nameplate
is requested to run its diagnostic, the program DIAGPG runs "concurrently”
with the program NPPROG. In addition to the two programs, several inter-
rupt routines are used to perform functions requiring fast response.

A flowchart of the nameplate program NPPROG is shown in Figure
51. Table 20 gives a brief explanation of the subroutines called by
the program. Normal execution starts when the nameplate is reset causing
processing to vector to the start of NPPROG. The subroutine SYSINT ini-
tializes the nameplate's variables and devices. The READ subroutine will
wait for the communication interrupt handlers to receive a command and its
associated data. The wait by the READ subroutine is terminated when a read
complete flag is set.

The CMDEXE routine decodes the command and calls the proper
internal subroutine to execute the command and set up the proper data for
the response. Certain commands (write data, erase, and run diagnostic)
require more execution time than others. The subroutines of CMDEXE
associated with long commands merely set up data and flags necessary for
the interrupt handlers (or diagnostic program) to perform the actual exe-
cution. The response to these commands is used to acknowledge their receipt
and the initiation of their execution. Thus the time from the reception of
the last of a command to the start of the response will always be the same.
Except for select, deselect and "read NP address" commands which are always
accepted and executed, all other commands received while a long command is
being executed will be rejected by the subroutines of CMDEXE. Such commands
when received will result in a response with a "NP busy" status.

156

.........

RO




DA A A M A AR M P
A T e R

B -
...................................................
............................................

COMMENTS

RESET Interrupt Vector

initiglize System Variables

Get Received Command and
Data; Loop if DIAGPG
not Running or Read not
complete

Diagnostic Program Active ?

Resume Diagnostic Program

CMDEXE RESUME or
AG Execute Command and set up
DIAGPG Response

Check if this NP has the
highest priority of selected
NP's

PRITST

If highest priority, send
response

Deselect here on Deselect

Command after response
sent.

Figure 51 Nameplate Main Program

......................................................
.................................
....................

.................
.......




Table 20

'.;.' 3 BN A
)

;

.

.

,

NAMEPLATE PROGRAM DIRECTORY

ROUTINE DESCRIPTION

NPPROG Main nameplate program, controls execution
of other routines

SYSINT Initialization routine

READ Transfers data from the receiver interrupt
handler's buffer to a command buffer

CMDEXE Decodes and executes commands
Checks if any NP of higher priority is
selected

WRITE Sends response to the SIC bus

CONDSL Deselects this NP if "deselect nameplate"
command was received

RESUME Resumes suspended diagnostic program

DIAGPG NP diagnostic program

SUSPEN Suspends the diagnostic program

158

B . - . . . . L. . PR * - o, .
* et ‘ e e e e v * M S, - L N . DA S SR W NP .
IR IR N S TR NI S I I Tl P Y S UL TP WAL IPL ShAPL. WPk I U WK WA Gy WU W WS e PRaT—




The PRITST subroutine is called by the main program to check the
PRIORITY IN line. If this line is low, a higher priority nameplate (i.e.
one closer to the system processor) is selected in which case this nameplate
must not send its response. The nameplate's timer is used to perform a
wait after the RESP/CMD line goes high and prior to the checking of the
PRIORITY IN line. This is to assure that all nameplates are synchronized
and thus the PRIORITY IN line is stable.

If this nameplate has highest prio;ity (i.e. it is selected and
its PRIORITY IN line is high) the subroutine WRITE proceeds to send the
response set up by the CMDEXE subroutine.

If the command received is a deselect command, the subroutine
CONDSL will then proceed to deselect this nameplate. This assures that
when the nameplate is responding with a status of "deselect acknowledge"
it remains selected until the response is completely sent.

The program then returns to the READ subroutine to check for
another command. This loop executes continuously unless the nameplate's
diagnostic program DIAGPG is requested to execute. A flowchart for the
diagnostic program is presented in Figure 52. Through the use of the
subroutine RESUME and SUSPEN, the diagnostic program and NPPROG are able
to run "concurrently" as co-routines. Each of the programs NPPROG and
DIAGPG use these subroutines to relinquish CPU control to the other at
appropriate places in their execution. DIAGPG will execute for a time
then suspend itself allowing NPPROG to check for any commands received.
If there are none, NPPROG will resume the diagnostic program. As long as
there are commands received that need to be processed the DIAGPG program

must wait.

159




COMMENTS

DIAGPG

(macre )

RAMTST Check NP RAM

SUSPEN Check for New Command
received by allowing
NPPROG to execute -

TMRTST Check NP Timer

SUSPEN

ROMTST

Check Roms
Checksum
SUSPEN
RECTST Check Write

Records Checksum

SUSPEN Control never returns
after this SUSPEN

LELLULUY

Figure 52 Nameplate Diagnostic Program
160

.............................
...........................




Interrupt handling routines are used in the nameplate to perform
functions which are "transparent” to the main program. These routines are
listed in Table 21. All these routines process data buffers and set flags
to indicate their status of execution to the main program. Upon completion,
these routines return to the program at the point of interruption so that
the flow of the main program remains the same.

Communication between various routines is accomplished through
common areas. Tables 22, 23 and 24 identify the common blocks of vari-

ables and their functions. Not all routines need access to all common

variables, so the common area is divided into two local common areas and
a global common area.
Detailed program descriptions including flowcharts for the name-

plate software are presented in Appendix C, Section 4-A.

. 4.3 PROCESSOR INTERFACE TO THE SIC

b In order to facilitate interaction of programs running in the pro-
cessor with electronic nameplates installed in the SIC, an interface con-
sisting of a hardware nameplate interface controller board and a software

SIC handler has been developed. The SIC handler consists of a set of

software routines designed to perform all control and monitoring actions

required for communication.

4.3,1 NAMEPLATE INTERFACE CONTROLLER DESIGN
The nameplate interface controller (NIC) provides the hardware
resources required to interface the processor with the SIC bus. A block

diagram for the nameplate interface controller is presented in Figure 53,

Operational and interface specifications for the NIC are presented in

AT
VI I B R )

161

Vieow

c_,-V‘_
3

b

)

»

r

]

I WU/ POV WU PSP SO




Table 21

NAMEPLATE INTERRUPT HANDLERS

NAME INTERRUPT SOURCE DESCRIPTION

NPPROG RESETN Start execution of the main

program

CMDSTR IRQN from Initializes serial communication
RESP/CMD line to receive a command

RXDAT RDA of serial Stores incoming data bytes in
Teceiver temporary buffer

CMDSTP Timer Input Terminates command reception
Capture from
RESP/CMD line

WRTERA Timer Output Writes data to EPROM, or

Compare

simulates memory erase.

162

USRS o Wl CRLID AP U GRar TPV Y

P S G N i

> A e e e




)

Table 22

NPCOMM - NAMEPLATE GLOBAL COMMON

NAME SIZE (bytes) DESCRIPTION
THNPSL 1 This NP selected flag
NPSTAT 1 NP status byte
ERSTAT 1 Error reason status
NPADDR 1 Assigned NP address
NPBUSY 1 NP busy flag
NPSYCT 2 NP synchronization count
CMD 1 NP command being processed
CMDDAT 18 Data for command
CMDCNT 1 Number of Data bytes received

with a command
TXCNT 2 Number of bytes in response
TXDATA 4 First 4 bytes of response
DIAGAD 2 Diagnostic program resume
address
DIADDT 2 Diagnostic result data
DIAGSV 4 Diagnostic save buffer

163

LS WS VP e.) [P S A S G S U U T UG S Sl N S S G S S G G W

P AT




Table 23

RDCOMM - READ COMMAND LOCAL COMMON

NAME SIZE (bytes) DESCRIPTION
RDCOMP 1 Read complete flag
RDSTAT 1 Status of received data
RDBYCT 1 Number of bytes received
READBF 20 Temporary buffer for received
data

=

o

.




—r——
AN AL SR UL P
PP T R I
REXGRIAIS

AT S Pl atue

ke . PO S R A P

Table 24

WRTCOM - WRITE MEMORY LOCAL COMMON

NAME SIZE (bytes) DESCRIPTION

WRTBUF 15 Data to be written

RECADR 2 Starting address of record to
be written

WRTPTR 1 Pointer into WRTBUF

DATTYP 1 Type of data to be written;
Erase memory, write memory
data, write valid record bit

WRTFLG 1 Write enable/disable flag

ERASCT 1 Count of time interrupts for
erase

WRTTRI 1 Write re-try count

165

PP T RPN TP W S A A [ S W U T SV SO E N




Y
. 4
]
. weaderg yoolg JIa[[oajuo) aoejrajuj aejdoweNy €S aandig
2 - 5
MV? NOUl - g ]
a INOJSIa 180d 4 m
NOSSI SN1VLS- ga-1a ”m
a T0H1INOD
.‘ aW5/dS3Y c ]
" \ . A
gv-2v B
NSO
13535dN |
¥102$ Se :
4
< 3
A .
- mo-r< O o
AT g-2 Luls 1D H3QIAIG -43IN3o 4 5 §
Md ]
X0 [—T2g] 0D | [ b
7
AG+ ;
oxul B
L ﬂ% XL [ 5 WRO0D
AWJ/dS3y T 140d m | .4
NOILVYD V-2V &
NAWROD | @ A — ;
vivaxa |9xY 7
viva VIOV ga-1a 30023a
W3S NOMI 7 HaJv ¢l
vivaxy |9t S9F NSD v-SIv
sng 2Is —
H3SIDYOX3




g

oo MDD
D P ROTKOGE |

T

PR

S P TR
Lottt vl

J e o

B R N N W gy P Qv gy ppe—— —p—— — e e T——y

Tables 25 and 26. The NIC may be used in any processor's chassis

utilizing the Motorola EXORciser bus. The address space for the NIC con-

sists of 8 bytes (addresses XXX¢) through XXX7). Of these addresses, only

addresses XXX2 through XXX5 are actually used. The symbol X designates a
4

hexadecimal number (f through F) in the address field that is user select-

able through switches.

Theory of Operation

This section provides a description of the nameplate interface
controller block diagram shown in Figure 53. Appendix B, Section 4-A contains

the detailed schematic diagrams for this controller.

Address Decoding and EXORciser Bus Buffers

The NIC is built on a MEX68USM Motorola Universal Support Module
which provides the address decoding and buffering of the EXORciser bus
signals. EXORciser bus address signals Al15-A3 are decoded to generate a
chip select signal CSN. This signal and address lines A2, Al and AQ are
used to specify the NIC register requested. Switches S1, S2, and S3 are
used to select the upper three hexadecimal digits of the address. Switch
S4 should always be set to zero. One is referred to the MEX68USM user's
guide for the location of these switches and for detailed information per-

taining to the address decoding and bus buffering.

Serial Communications

An LSI device, the Motorola MC6850 (ACIA), is used to convert an
8 bit byte of parallel data into a 10 bit serial data stream (on transmis-
sion) and to convert 10 bits of serial data into 8 bit parallel data (on

reception). The serial data is transmitted and received at a rate of 4800

167

PPN SIS S YT YR T . WP, A LA, YR T U WA W S L PP P T e aa s A . PP P S




P e e e - . . - ‘L W e
i Tt ke Sd A Al A A aa el n e da Sat el e A ST SIS SASE I SHuT W o aL L A‘i

Table 25

NAMEPLATE INTERFACE CONTROLLER SPECIFICATIONS

CHARACTERISTIC SPECIFICATION

Power Requirements +5Vdc  +5% @ 2.1 Amps
+12Vdc +5% @ 0.5 Amps
-12Vdc +5% @ 0.4 Amps

Input Signals TTL voltage compatible

Output Signals TTL voltage compatible

Operating Temperature] 0 to 70°C

External Interfaces Motorola EXORciser Bus 1
SIC Bus 2

1 Refer to MC6800 EXORciser User's Guide-
2 Refer to Appendix B, Section 4-B.

168

A




Table 26

NIC REGISTERS1
ADDRESS 2 FUNCTION
XXX 2 SIC Status Register
XXX 3 SIC Control Register
XXX 4 SIC Communication Control Register
XXX 5 SIC Communication Data Register

1 gee Section4.1.20f this document for a full explanation of the use of
these registers.

2 X means this hexadecimal digit is switch selectable (8-F).

169

PRPUE NP W S SN VPR SR P IPRE S ST S g




:
-
1
&
]
L+
A
q
4
L
4
-
4
4
o
{
i

I

)
]

4l

f‘";' ‘7-;::'5' -“'s

s

baud. The ACIA also provides a modem control signal which is used to

implement the RESP/CMD signal of the SIC bus. This signal is used to con-

“.s

trol the operation of tri-state buffers which direct the flow of data on

the simplex serial data line of the SIC bus. One is referred to Motorola's
documentation on the MC6850 for more detailed information on its operation

and use.

Clock Generator and Divider

A 4.9152 MHz crystal and a clock generator integrated circuit are
used to generate a TTL compatible clock signal, called$2 CLK, of frequency
2.4576 MHz for the SIC bus. This frequency is then divided by 32 to create
a %16 clock for the serial communication ACIA. Also three divider outputs
(1/128, 1/64, 1/32) are input to the SIC status register so that consecutive
reads of the register may be used to determine if the clock circuit is

functioning.

SIC Control and Status

An LSI device, the Motorola MC6821 (PIA), is used as the SIC
status and control registers. One of the PIA's 8 bit data ports is config-
ured as an input port and is used to monitor several important SIC signal
lines. This data port is called the SIC status register. The PIA's control
register assoclated with this data port, called the SIC control register,
controls the modes of operation of the SIC and generates a reset signal
for the SIC bus. The reset signal kills the clock signal going into the

SIC bus and causes the nameplate to reset. .

LM Timer Circuit

Another function residing on the nameplate interface controller

170

\ s ® et et e . . - .o - - . . . N . - B . . ) LT . - . . e
I Ty Tl T T PN R AP - T . .- " . . . . . N I o,
PRI VoAl W T Sl ST S A L ey N S WL BT AP IPAR PP B S SIP PP WL G allmn me A Al el s e aTeat. 4 e e .‘_J




card is the LM timer circuit. This circuit divides the LM's 1 MHz system

clock by 104 to obtain a 100 Hz signal. This signal triggers an interrupt

through the PIA on the nameplate interface controller every 10 milliseconds.

4.3.2 SIC HANDLER DESIGN

A handler was developed to simplify the interface between tasks
running in the LM and the control registers in the nameplate interface
controller. A calling task requests a service (such as '"load the name-
plate's directory") from the handler through an argument list. The handler
translates this request into a sequence of nameplate commands required to
perform the function. The handler also performs all the control and timing
actions required by the SIC communication protocol as described in the
preceeding sections. Use and theory of operation of this SIC handler are

presented in Section 2.3.5.

1

Lo . T N . . . DN PR . -
-, -~ LIPVIL WV ST SON SPRIY N S W S . P GRS T e . L A R I .




SECTION 5

-t LINK MANAGER
5.1 DESIGN OBJECTIVES

- The Link Manager (LMG) Simulator described in this document is designed

o to meet the following objectives:

1. Verification of Link Module (LM) operation, demonstration of all

functions proposed for the prototype LM.

2. Ability to exercise subsystems interfaced through the Interface
Configuration Adapter (ICA), thus verifying the operation of the prototype

ICA.
3. Different operational options:

(a) 'real-time' simulation with LM - fast command stream from a
disk file. As soon as the execution of one command is
finished, the next command from the disk file will be given

to the LM.

(b) 'manual' operation of LM - commands input from a CRT

manually. The results can be seen in steps at the CRT.

(c) ‘'combined' operation - 'real-time' and 'manual' operation

can be switched back and forth.

(d) ‘'repetitive' operation - operations can be looped at high

speed for exercising and debugging.

172

.........




4, Facilities to easily set up a simulation or repetitive test, or

set up a command stream for 'real-time' operation.

5. Ease of use, with simplified procedures for operating the LMG

simulator.

6. Ease of modification. Software will be modular so as to facilitate

future modifications to the LMG simulator.
5.2 SOFTWARE DESIGN OVERVIEW

5.2.1 GENERAL FEATURES
In order to satisfy the objectives described in 5.1, the design

is approached in the following way:

1. The LMG simulator is comprised of two real-time tasks running
under the RSX-11M operating system on a PDP-11/70 computer. The Command
Interpreter task interprets and executes commands given to the LMG simulator.
The Shared Memory Display task interprets and displays the contents of

shared memory.
2. The high level language FORTRAN IV is used wherever possible.

3. Structuved, modular programming techniques are employed for

ease of debugging and modification.

4. The simulator is interactive and convgrsational to facilitate

use of the system.

5. An output log file on the disk may be used to record all
transactions during a simulation. It can be used for debugging or demon-
stration purposes.

173

IS A e SR AT e e e TR T T T e e T T e e e
Eameloanibhaelinmelnmenitalnmubmndeitniutdiamuihmednmeds P T U I U L, P T . i PO S SR AL N ST S

-




.........

e
(VAN

6. Some commands other than those of the LM and LMG, called
'Maintenance Port' (MP) commands, are defined to support the debugging and
demonstration features of the system. The LM, LMG and MP commands supported

are detailed in Section 5.3.

7. Two command input modes are offered. Commands can be input
either from the CRT or a disk file. Commands and parameters input through
the CRT can be recorded to a disk file to be used at a later time as a disk

input command file for 'real-time' or repetitive simulationms.

8. Indirect command files are used to facilitate the demonstra-
tion. The indirect command can contain all the commands and parameters

that are necessary for performing the demonstration.

9. The DEC DR11-C General-Purpose Interface Module is used as
an interface to transfer data between the PDP-11/70 and the SM of the LM.
The DR11-C Driver is written in assembly language and is installed as a

loadable driver in the RSX-11M operating system.

5.2.2 STRUCTURE OF THE SIMULATOR

Figures 54 and 55 are system diagrams of the LMG simulator.
There are two tasks in the LMG simulator system: Command Interpreter (CI)
task and SM Display (SMD) task., The CI task contains four major modules:
command identification module, command execution module, local processing
module and SM handler module. The command identification module receives
and interprets commands. The command execution module includes the
Maintenance Port (MP) command routines, LMG command routines and LM command

routines.

174

PP A A AP A T VI T VAT Tl P D S R TR TR A PP AP W W PR WP G SR IPL TPR DON - G ¢

R |




W1

W1

103eTNUTS HWT JO weadetrq A00Td

G 2an314g

103eTnuls ONWT

—

yselL
wms [

RS r

JL 13aTaQ
J-114a

yse],

12 1‘

o w ar em G v wm o e e fes Gn s e W e e S Es -

175

K

o
I S

. '\,v*."‘.
NS EFEIRY




v

—T————

PRCRAR

-~

—p—

wa3sAg 1o0jernuwis SW1 JOo weadejq Adold

jisel e

g aansyy

> = = o

saurinoy
£3TT73I0

- -

I

3114 puemmo) 3ndur !«g

i

EEYS & 4] ﬂ]

J-TTHa

13Tpuey
WS

yse] a33aadasju] puewmmo)

saulInoy aajsuela] eieq

9Tnpo 3uyssasoig Ted07

aTnpon
UOTIBITITIUSPT
puemmon

ANVIWOD
W1

ANVWIHOD
N1

nzﬁoo aln._

9TNPOW UOTINDSXY PpUBUALO)

L

TenTh Y W e 3 4
] ] 1

3114 807 Indang .AM“”WUV

T

9TTd puewmo) 3Inding

176




ERA PR
efet .

SO 8 AORaUA R RLEAY

A LRt N
-_ L,

WA VO

NS 04 2

e~ CPECARER S S
N VL o ‘l. PRI
. R | LRI N

BEEEC.3

T e ap——

R P L

These routines execute specific functions of the MP, LMG and LM commands.
The local processing module includes data transfer routines to perform the
data transfer functions between the LMG and the subsystem. The shared
memory handler is a subroutine used to access the shared memory through the
DR11-C driver. The SMD task uses the DR11-C driver to read the data in the
SM, and then interprets it and displays it on the CRT.

The DR11-C driver 1is an I/0 driver written for the RSX-11M oper-
ating system tu transfer data between the DR11-C and the SM in the LM.
Utility Library (UTILIB) is a collection of several utility routines shared

by the CI task and SMD task.

5.2.2,1 CI Task

The CI task runs on CRT #1. Commands and parameters can be input
from CRT or disk. The command identification module receives a command and
parameters, interprets it, and.executes it by calling the appropriate com
mand module. It echoes the command and parameters on the CRT if in disk
input mode, records the command and parameters to a new command file if in
creating command file mode, and records all the transactions during a
simulation to a log file if there is one open.

The command module gives command and parameters to, and handshakes
with, the SM by calling the SM handler to call the DR11-C driver. Some LMG
commands can be executed just by calling a sequence of the IMG modules. The
'LOCAL' command will cause the command identification module to call the
LP module to perform data transfer functions to/from the LM using the SM

handler and DR11-C driver.

5.2.2.2 SMD Task

The SMD task runs on CRT #2 to continually interpret and display
177




" AD-R124 624  THE REMOTE LINI( UNIT A DEHONSTRRTION OF OPERRTIONHL 3/
PERFORMANCE PART III..<U) HOUSTON UNIV TX DEPT
ELECTRICAL ENGINEERING C_J TAYORA ET AL. AUG

UNCLASSIFIED AFWAL-TR-81-1131-PT-3-1 F33615-80-C-1895 F/G 1772 |




. -, b .._...-o-a<..!A
3 " s 3 Yiede,

4 Ly, Lt ' Y . o ‘ N
! ' O
J 2e% c.-..-.~.

o
.
A}

{

L]
"l

et

-
ASa ARG

-

s
AN

1

!

] £
2, ! /
& . "

o

PR
——
i)

-

(St e
MERARSARN
1
:
AN

,
1
Ko

pa

)

.t e
e
ey

i ma el

- e ¥
L NP

4 - y——

-

. «
[T Wy

P

Mo e e

o

R
Ry

C3v Yoy

¥

-

—




the contents of the SM through calls to the DR11-C driver. The display of
the SM on CRT #2 is in an easy-to-read, interpreted format. Command name,
processing status, special conditions, and all the significant contents of

the SM are shown.

5.2.2.3 Data Transfer Routines

The data transfer routines are application programs to perform
the data I/0 functions. There are four kinds of data I/0: sequential in-
put, sequential output, refreshed input and refreshed output. The data I/0
task should be downloaded to the LM first. The LOCAL command causes one of
the data transfer routines to communicate with the data I/0 task running in

the LM to transfer data between the LMG and the subsystem.

5.2.2.4 Utility Routines
The utility routines contain many frequently used subroutines,

commonly used by the CI task and the SMD task.

5.2.2.5 SM Handler and DR11-C Driver

The SM handler is a subroutine which has several entry points to
access different places in the SM using the DR11-C driver. The DR11-C
driver handshakes with the SM hardware to implement data transfer between

the LMG simulator (PDP-11) and the LM.
5.3 COMMAND INTERPRETER (CI) TASK

Figure 56 is the structure of CI task. The CI task includes a main
program (command identification module) and many subroutines (for example,
LMG command routines, LM command routines, MP command routines, LP module,

SM handler). It interprets commands and executes them tarough the appro-

178

L. T RPN PO SR AT L T T T . oo T - . - o e ot
- PaS . YY) s a h/ a ™ LRI T E Wy PRSP LAY S L) SR




AL

.{3}...!. RO Ny

5% 5
A

jsel 193121diajuy puewmo) 3yl JO JINIONIIS

1aTpuey
WS

9¢ 2andy14

r

uoFINOIXT
1a3ysuea] eleq

8savoi1d
puemno)

18007

| I

uotIndaxXy
puemmo)
ON1

|

uopIndaxy
pueumo)
R1

1

uoTINOAIXY
pueumo)
di

J

A
8892014 uoTINOAX 29
| BT T vaEoom »u%uwg
" 3d9917put
" | T
1
""""--""
[}
'
sauyInoy CEELI S E P ssavoad puewmo?)
£3TT1INn sanyied/io011y > pueuwmno) anduy uoyIeZITETITUL
L 1 1 J
1939adiajug
pueumo)

Tets 4 " gaamy- . - . -
SIS A e e

TR AR .:.. e

T LI T R P
S e N

LI -.-..-r.-.-‘

RN YE]
IR AN -..ao.o

r
SAIATSEY "

a0 I I SN

YL sy ¥ v

e
s

T \v--\".\-.-...n,.

\-‘.\-

s
LRI AT A

i79

)

e = - .-
-
s e e e
P A A
M Bia S Be N &

.
PRI S

« -
P -




perws

N

_

N

priate modules.

:::.j: ‘ The CI task is initially in CRT input mode, and can be switched between
.: CRT and disk input modes. It can be directed to create a new command file.
Also, the action to be taken on errors, whether to stop or continue, can be
§ selected by the user.

The CI task performs initialization first. The initialization steps
\-:'.' include requests at CRT #1 for:

1, the cursor home up control characters for the terminal,

T 2. the type of transcript to the CRT desired for disk input mode,

':: 3. the output log file name, if there is to be one.

3

:_’E: The CI task is thenready for a command.

' When the CI task receives a command, it first checks the validity of
:-37' the command. If the command is valid, it is given to the command execution
-'_ module for execution. If the command is a 'LOCAL' command, a data transfer
'::4 application subprogram will be invoked to perform the data transfer function
: between the LMG and the subsystem.

. If the input command begins with the character '@', it is an indirect
" command file rather than a command. The indirect command file procedure
opens the indirect command file and processes it using the command process
module, as the dashed line indicates in Figure 56. If an error or failure .
E’ occurs, the CI task processes it to display the error or failure message.

‘ The utility routines are used to support the CI task performing its function.
T There are three categories of commands: LMG command, LM function com—
'° mand and MP command. The LMG commands are listed in Table 27, The LM
T function commands are listed in Table 28, The MP commands are listed in
o 180

Y et e e e ST T T e T C e T e e R .
P S b N PSS IR UA PP S DL PPN I S Wy et et al o me o a"




i - 3P

Calau il ‘.“

e

PR

o o =
e s wsonaa

e by
PSR

A i bt Rt e Y

20 TLEE S e ST s e

1 g

wdadi 2.4 alBmb

&

"yt

WA EML N IO AN N S AN

A w e

e Tem Menla

Table 27

LMG COMMANDS

Command

Function

SMDIAG

Perform SM diagnostic function

LOCAL

Request data transfer application
program to transfer data between
the LMG and the subsystem.

181




(3
Tt m e VN

L]
RS
Al

3
i
4
:-‘-: Table 28
" LM FUNCTION COMMAND
“.* Command Function within LM
i NOOP No operation
. PRGMLD Load non-resident task
-. RUN Run non-resident task ‘
¥ STOP Stop non-resident task
CONF1G Configure selected subsystem
XFRTBL Transfer LM system tables to/from LMG
CANCEL Cancel the previous command that is pending
RESET Reset CMDITR and ICA
RESTRT Jump to power up restart location
STATUS Clear input buffer request bit and service
request bit in flag mode
NPINIT Request NP handler to initialize NP's
NPDIAG Same as NPINIT

d
.
]
.,

. ) “. N
DL

182




. CAA R
PO TR TOL VPR S P N v

T T e S e
DI M AP PSRRI DL A R R SR

e e e
LIRS N . R

Table 29 . All the commands that will access the SM u-ilize the SM handler.
A brief description of each command is given in the following. Full details

for using each command are given in the RLUDS User's Manual.

5.3.1 LMG COMMANDS
When the LMG simulator receives a LMG command at CRT #1, it will
execute this command by itself, or by issuing a series of LM function com-

mands to the LM, or by a combination of both methods.

1. SMDIAG: The SMDIAG command executes a diagnostic on shared
memory, verifying the ability to read from and write to the shared memory.
It also checks the hardware interrupt caused in the LM when the LMG writes

an LM function command into SM.

2. LOCAL: The LOCAL command causes a data transfer applica-
tion subprogram to perform data transfer between the LMG and the subsystem.
Before issuing the 'LOCAL' command, a data I/0 task should be loaded to the
LM and run to communicate with the data transfer application subroutine in

the LMG.

5.3.2 LM FUNCTION COMMANDS
When the LMG receives an LM function command, it will request the
LM to execute this command. The LM will return the status of the command

execution and/or the results of execution to the LMG.

1. NOOP: This command doesn't request the LM to take any
action. It is used to provide the LMG with a means of exercising the com-

mand handshake without causing anything to happen.

183




................

A e B e e g o B IO S st Jan JiabeJaadk- Sese Shuiv Jess 4
-t gL N " ° -

_ o Clihan() a g i) - . 4 P PN -
m}:n-ﬂ-k'-:ﬂq:«-!-‘, e R R N N T I A o R . i A T e e a - e O P A P P T e

A
v
. Table 29
3__: MP COMMANDS
"t. Command Function
g CRT Input from CRT
DISK Input from disk
- CLOLF Close an old log file and open a new one,
- if wanted.
:'. OPICF Open input command file
jx CLICF Close input command file
x\ OPOCF Open output command file
:,. CLOCF Close output command file
CREATE Creating Output Command File
NOCRET Stop creating output command file
i STPERR Stop on error
' CNTERR Continue on error
MPSTAT Output Maintenance Port Status
o REWIND Rewind input command file
N EXIT Exit program
E WRITE Write data to SM
. READ‘ Read data from SM
DUMP Dump all the data in SM on the CRT
SETTIM Set PDP-11 system time to LM
%
o
\ 184
t

. ?-v-"-.v}--_q:...-.. N TN T T e T T T T e e T T e T ey Tt LotetL e

LA PRI TR R W N I L S R R LR S i L’-'-_;'."._'A__ o o




L ]
-.v
‘N’
L]
<
-
-

-3
1_’

Caiy
»

e "; 'a‘ -_."

Pad iy
“_a
an-2"a"a%a

'. .‘-,l. ’
o

AR
aws " e

ol

LT

A <
L AR B

- 0 ‘

u:'-*_‘r\'_‘:. _'-A_'\ . ' * ;- “; N

LA It e g

0

o . )
- D8, T S W A N \.J-.T.h_"\-.‘l»\.', \‘l&‘,x-\“.““‘l -.. '.. I ‘- o Teet e e e Y " . e

- e, .
--------

......

.......

2. PRGMLD: This command requests the LM to download a nonresident
task from the LMG or uplead a nonresident task from the NP. The nonresi-

dent task can be a data I/0 task or a subsystem diagnostic task.

3. RUN: This command requests the LM to activate the non-

resident task in the LM.

4. STOP: This command requests the LM to terminate the run-

ning of the nonresident task in the LM.

5. CONFI1G: This command requests the LM to cause the ICA
handler to congigure the ICA with configuration parameters from either the

LMG or the NP.

6. XFRTBL: This command requests the LM to transfer LM system
tables to or from the LMG. The LMG interprets any table obtained from the

LM and displays it on the CRT in an easy to read format.

7. CANCEL: This command requests the LM to stop the execution

of any other command already in progress.

8. RESET: This command requests the LM to reset the state of

the LM's CMDITR task and of the ICA hardware.

9. RESTRT: This command requests the LM to jump to its power

up restart location.

10. STATUS: This command clears the service request bit in the
status alert byte and requests the LM to clear the input buffer request bit

in flag mode data transfers.

185

----------- - " -
P A P IR Y S iat et




- R AL A W L
DA RS DRI TR

)

;
LARA

o
R Rt

A
L AN

N
Pl Y W Y

b
’

32

6 s .
~ et

B
%

b 1* < A

-

Teay

L T - I T S e A T T . e T SR U

11. NPINIT: This command requests the NP handler to reset all
the NPs and cause each NP to run its internal diagnostic. The LMG inter-

prets and displays the diagnostic result on the CRT.

12. NPDIAG: This command is identical to the NPINIT command.

5.3.3 MP COMMANDS
MP commands implement features for debugging and demonstration of

the RLU system. They also implement utility functions in the LMG simulator.

1. CRT: This command directs that commands and parameters

will be input from the CRT.

2. DISK: This command directs that commands and parameters

will be input from the disk (an input command file).

3. CLOLF: This command closes an old output log file and

allows the option to open a new output log file.

4. OPICF: This command opens an input command file for use

in disk input mode.

5. CLICF: This command closes the opened input command file.

6. OPOCF: This command opens an output command file for re-

cording the command stream (for future use as an input command file).

7. CLOCF: This command closes the opened output command file.

8. CREATE: This command puts the system into the creating
mode. All the commands and parameters will be recorded in the output com-
mand file.

186

L]
b S et R T L P I L eI B ) R S . Lot PRI JUEE L.
’A."n’”-:"n."is.‘.'g"-'&n.’;‘-\_',q_‘g"'- LI A e e s e NPT N T . PRI PP I




E:TMA» P S L S e . e N - - - -ttt - - -
Al
3
v
= 9. NOCRET: This command puts the system into the non-creating
e mode.
-' 10. STPERR: This command causes disk input mode execution to
stop if an error occurs. At the same time, the disk input mode will be
o~
‘: switched to CRT input mode.
o
- 1l. CNTERR: This command causes disk input mode execution to
continue even if an error occurs.
"
’-\ 12. MPSTAT: This command will display the maintenance port
)
% status on the CRT. The MP status includes the files opened, stop-on-error
.:, or continue-on-error condition, creating or non-creating mode, CRT input or
S
% disk input mode.
I
iy 13. REWIND: This command rewinds the input command file to the
': beginning.
a
-«:
14. EXIT: This command closes all opened files and terminates
" the CI task.
\4
"] 15. WRITE: This command writes a block of data in HEXASCII
' format into the SM.
- 16.  READ: This command reads a block of data from the SM and
3 displays 1t in HEXASCII format on the CRT.
4 17. DUMP: This command reads all the data in the SM and dis-
4 plays it in HEXASCII format on the CRT.
-
R 18. SETTIM: This command gets the time from PDP-11 system and
,‘!
'3..'- sets the time in the LM.

3

P
"
Y

ATt
PIOr Y




W
s,
(‘
5.4 SHARED MEMORY DISPLAY (SMD) TASK
i
? The SMD task is a program written to con.inually interpret and display
e the contents of the SM on a CRT. Figure 57 is the structure of SMD task.
The SMD task performs initialization first. The initialization steps
;ij include requests at CRT #2 for:
f%: 1. The cursor home up contreol characters for the terminal.
A
TE{ 2. The refresh rate for updating the SM display on the CRT.
? At the user-selected refresh rate the entire contents of the SM will
b, be copied into a buffer in the SMD task using the DR11-C driver. Then the
5f SMD task interprets the data and displays it in HEXASCII on the CRT.
;& The format of the shared memory display is shown in Figure 58. The
‘e information displayed includes:
- 1. The most recent LM function command name and its processing status.
] 2, Information on special conditions such as a service request, LM
Qf alert, NP alert, ICA alert, LA alert and subsystem down.
i 3. Command and status bytes in HEXASCII format. The command bytes .
s include the LM function command and the data transfer command.
?; The status byte include LM function status, data transfer status,
j” status alert, LM status, NP status, ICA status, and LA status.
N 4. Contents of the LM buffer, I/0 buffer 1 and I/0 buffer 0 in HEXASCII.
N
5.5 DATA TRANSFER ROUTINES
'3‘ The data transfer routines are application routines to transfer data
- 188
1




ysel Aerdsiq AIowdl paieys Jo ainldnialg

sjuajuo) ayl

Ae1dstq pue

WS 30
sjuajuo)

.S 2an314d

39ada9aijug ayl 199

: (=]

.,. m 8
_._ ]
s§s9d01g hA: (o)
m 19308IRY) ay3 uo RS uf .@
5 SsuTIn nduy a8essoy o
K auiInoy 2uI] 9T3ITIQNS | ¥
5 £311130 Po31oTTO8U) ay3y Lerdsiq N1ey ay3 Inokeq uoyIeZFTeTITUI -]
;
. [
N r
M ans mw
: :
!

¥

Coaliy
Moy ta La "

-

Y . S PN .-vl-'l
s, ' g, . PRERIERAINCN »

P et al.

€, T, N T N T
. . RN R
— L

3 AT Y] [ % LR ] R
H et sl o« R




-\'-A_ﬂs.- (G S R AR SRS LR AEN CR R T N S T I VO L T W RV T T T e e T
Y
P
-
Y

¢

Pt
.
A

.
-

s s
L )
PUPRFRTA

gy
-

o~

>
AN
PRI
Ll

TS

IS

’ o
o

- LMCHMD ¢ STATUS:
SFECIAL CONDITIONS :

LMD 7/ STATUS ¢
LMFC LMFS DXTM LDXST STAL LMST NFST IcsT

LAST

. LM BUFFER

jg 1/0 BUFFER 1
X

o

By 1/0 RUFFER 0

Figure 58 Layout of Shared Memory Display

- 190

St
APt

A I “ SN

“ - N et
R s e gt ara St e R
—iae i it




between the LMG and the subsystem. A data I/0 nonresident task should be

g! loaded into the LM from either the LMG or the NP. The nonresident task

handshakes through SM with the data transfer routines to perform data

PETTNTTTy
M-l

transfer to or from LMG. There are four types of data transfers: sequen-
tial input, sequential output, refreshed input and refreshed output.
Figure 59 shows the protocol of the data transfer handshake. Figure 60
shows the structure of the data transfer modules. The details of each are

given below.

5.5.1 DATA TRANSFER HANDSHAKE PROTOCOL

Figure 59 shows the command byte and status bytes used in the
data transfer handshake. Cl is the data transfer command byte. S1 and S§
are the data transfer status bytes.

The LMG begins a data transfer operation by performing a read-
modify-write on status by S1. After the read portion, the LMG checks the
RDY® and RDY1l bits to see if Buffer ¢ (output buffer) is available or
Buffer 1 (input buffer) is available. If the desired buffer is available,
the LMG sets REQ¢ or RFQl to indicate which is being taken and writes S1
back to SM. It then writes Sﬁ to SM to give the number of bytes (WSC) to
be transferred. After the data is transferred, the LMG writes command byte
Cl to SM, causiiig an interrupt. In Cl, IOB indicates whether Buffer 1 or

@ is being released, and REF=1 if buffer being released is refreshed.

191

T T T T T e e et e e e et . . .
- - " LS SN SO A O JPVIIT S N SIDA VY S Y Al PYOR Wl WU DR 9 . o [V T IR UL A S A W - - B - —
e e P PP




Data Transfer Command Word:

15 9 8 7 3 J ]
E 1 |r ;‘:
R 0 E I LA
R B |F LI
Cl cg
Data Transfer Status Word:
15 14 13 9 8 7 4 [
R] R R[IR
p| e{F E|D Wse
Y| ofjlL oly
11 1lg
sl s@

Data Transfer Handshake:

1.

LMG sends C@ to LM, generatina an interrupt

LA = 4-bit Link Address
INIT = 1 to indicate initiation of message transfer

LMG performs read-modify-write on S1

FLG = 1 if subsystem is flagged as down

RDY® = 1 if buffer @ is available

RDYl = 1 if buffer 1 is available

REQP = 1 to indicate buffer @ is being taken

REQ1 = 1 to indicate buffer 1 is being taken

LMG writes S@ to LM (output) or reads S@ from LM (input)
WSC = word subcount, no. of words being transferred

LMG transfers data

IMG sends Cl to LM, generating an interrupt

ERR = 1 if an error was encountered
I0B = 1 to release buffer 1, ¢§ to release buffer @ (single-buffered 1/0)

REF = 1 if buffer to be released is refreshed

Figure 59 Data Transfer Handshake Protocol

192




S,

-

Wa tn

ik Bvac i ren v

P e

—r
.- - .

o e
-_!4'.‘..—-_-

andanp
paysai13ay

saTnpol 1ojsuea] Pieq dyi JO 2Inidni1ls (09 In3T4

nduy
paysaajyay

andang
TeT3Iusanbag

nduy
Terjuanbag

S9TNPON
Jajysuel1]
ele(

-N.-...-.- (R RN

193

v v
...,.-a




5‘5.2

modules.

5.5.2.1

5.5.2.2

5.5.2.3

DATA TRANSFER MODULES

Following is the handshake sequence for each of the data transfer

Sequential Input

1.

LMG requests input buffer (if RDYl=1 and FLG=@, then LMG

sets RDYl=¢ and REQl=l).

LMG reads the WSC (word subcount) and data from SM.

LMG issues STATUS function command to release buffer and

clear asynchronous service request.

Sequential Output

1.

LMG requests output buffer (if RDY@=1 and FLG=@, then LMG

sets RDY@=g and REQ@=1).
LMG writes WSC and data into SM.

LMG writes data transfer command Cl (¢¢16)' causing an in-

terrupt to the LM to release buffer @.

Refreshed Input

1.

3'

LMG requests input buffer (if RDYl=l and FLG=f, then LMG

sets RDYl=@ and REQl=1).
LMG reads WSC and data from SM.

LMG writes data transfer command Cl (¢316), causing an in-

terrupt to the LM to release the buffer.

194




@ o gl v . » - - - L) -~
- R T . S ~ . -,
Pl Al Pa-.a M ta et Ll e I S A R P T R N A I e T T A Y
]

XY
LI WL Y

‘i 5.5.2.4  Refreshed Output
. 1. LMG requests output buffer (if RDY@=1 and FLG=6, then LMG

sets RDY@=@ and REQ@=1).
2. LMG writes WSC and data into SM.

o 3. LMG writes data transfer command Cl (¢116), causing an in-

Ll terrupt to the LM to release the buffer.
5.6 UTILITY ROUTINES

The utility routines are stored in a file called UTILIB. These rou-
s tines are frequently used by or shared by other programs or subroutines.
They can be classified into general categories by their functions. These

general categories are described below.

9 5.6.1 DATA CONVERSION ROUTINES

These routines perform general purpose data conversion tasks:
1. Conversion between binary data and HEXASCII characters.

0 2, Conversion between BCD data and BCD ASCII characters.

' -

- 3. Conversion between decimal values and 2's complement binary
& . or offset binary values.

;1 4, Conversion of binary data to BCD ASCII characters.

2 5.6.2 DATA TRANSFER ROUTINES

i: These perform the following handshake protocol functions:

o 1. Request I/0 buffer.

¢




..........................
» e

X
¢
ii: 2. Read or write WSC.
{ 3. Read or write data.
f: 4., Write C1l to interrupt LM.
R
5.6.3 MISCELLANEOUS UTILITY ROUTINES
.. Some of the major functions performed by this last category in-
e clude:
\ 1. Wait and check the status of LM function command execution.
e .
fgj 2. Clear service request bit.
; 3 3. Clear the screen of the terminal.
ffi 4. Check one bit of a byte.
. 5. Read a parameter and check whether its value falls in the
5? predefined range.
'ib 6. Logical function 'YES' to facilitate answering yes-or-no
o questions.
o 5.7 SM HANDLER
0 The Shared Memory Handler (SMH) is a subroutine which provides many
azf entry points for other programs to call to access the SM. The SM has 256
sz bytes, with addresses from @ to 255. Each SMH entry point implies a start-
ol ing address for accessing SM through the DR11-C driver. The number of
il bytes to be accessed and the function to be performed (read, write or read-
;; modify-write) are passed as arguments in the call to the entry point. Us-
o ing symbolic entry points for each type of SM access relieves the calling
196

I < TP

gl
‘

A

a

[ 4 .
IO I NPT LU S T S

- -y - - i I R v LR . L - . D . D
s g 2 P P SR SR | e et T e My e . .
AR AN N A AL PR SRRy i o

Py



-------

2 2 2 1
- - 2

program of the responsibility for knowing any SM addresses or handshake

§ protocols.

: 5.7.1 SM HANDLER FUNCTIONS

_ Described below are the functions of each of the entry points of
S the SMH listed in Table 30.

¥ WFCMD: This entry point is used to write the LM function com-
3

~d mand byte to the SM.

13 RFCMD: This entry point is used to read the LM function com-
[y mand byte from the SM.

f RFSTS: This entry point is used to read the LM function status
< byte from the SM.

%: WXCMD: This entry point is used to write the data transfer
:ﬁ command byte (Cl) to the SM.

o RXCMD: This entry point is used to read the data transfer com-
%ﬁ mand byte from the SM.

' : RS1: This entry point is used to read the data transfer status
N byte S1 from the SM.
';f wsl: This entry point is used to write the data transfer

: status byte S1 to the SM.
N RWMS1: This entry point is used to do read-modify-write on data

A-.I
a1t

transfer status byte Sl.

197

]
N
v,

o

«

e e R s S S U T S A S e L A . " -
o [ LRI . s, ST s - T L e ey e .
. amninatll il 5 O S T I T S S AN S A N R I A A I E N SR SN, ‘i'-'~ S o S




ﬁﬁ Table 30
,_. FUNCTIONS OF SMH

‘§§ Entry Name Function

v WFCMD Write LM function command byte

;i RFCMD Read LM function command byte

i: RFSTS Read LM function status byte

5 WXCMD Write data transfer command byte

;& RXCMD Read data transfer command byte )
?i RSl Read data transfer status byte Sl

» WSl Write data transfer status byte Sl

;t RWMS1 Read-modify-write data transfer status byte Sl

%i WIXS¢ Write data transfer status byte SO

: RTXSH Read data transfer status byte S

5 WFBUF Write data to LM function buffer

{C: RFBUF Read data from LM function buffer

= WXBUF Write data to data I/0 buffer

5 RXBUF Read data from data I/0 buffer

" RLASTS Read LA status byte

2 RICSTS Read ICA status byte *
fﬁ RLMSTS Read LM hardware status byte

%é RNPSTS Read NP hardware status byte .
;~ RSTSAL Read status alert byte

jﬁ WSTSAL Write status alert byte

198

=

.
.

T LN T T e e e
PR 8




h WTXS@: This entry point is used to write the data transfer

status byte S@ to the SM.

RTXS@: This entry point is used to read the data transfer status

byte S@ from the SM.

WFBUF: This entry point is used to write data to LM function

buffer. The number of data bytes is limited to 64.

RFBUF: This entry point is used to read data from the LM func-

tion buffer. The number of data bytes is limited to 64.

WXBUF: This entry point is used to write data to an I/O buffer.
Buffer @ or buffer 1 can be selected. The number of data bytes is limited

to 64.

RXBUF: This entry point is used to read data from an I/0 buffer.
Buffer @ or buffer 1 can be selected. The number of data bytes is limited

to 64.

RLASTS: This entry point is used to read the LA status byte from

the SM.

RICSTS: This entry point is used to read the ICA status byte

from the SM.

RLMSTS: This entry point is used to read the LM hardware status

byte from the SM,

RNPSTS: This entry point is used to read the NP hardware status
byte from the SM.

199




RSTSAL: This entry point is used to read the status alert byte

from the SM.

WSTSAL: This entry point 1s used to write the status alert byte

to the SM.

5.8 DR11-C DRIVER

The DR11-C driver is an RSX-11M I/0 peripheral driver written in assem-
bly language. It drives the DEC DR11-C board which interfaces the LM with
the DEC PDP 11/70 that simulates the LMG.

The DR11-C board has two output control lines labled CSR@ and CSR1 and
two input control lines labled AREQ and BREQ. The BREQ line is unused.

The high order byte of the 16 data lines is used as the 5M address. The
low order byte of the 16 data lines is used as the data for input or output.

Figure 61 is a diagram of the handshakes for read, write and read-
modify-write operations. For the 'write' function, the driver sets CSR1
and puts valid address and data in the output register. Then the driver
sets CSRP to initialize the data transfer. AREQ should be low before set-
ting the CSRf. The driver then exits and is recalled when AREQ goes high
generating an interrupt. The driver then resets CSRf and waits in a wait
loop for AREQ to return low. Timeout checks are wherever needed. The .
'read' and 'read-modify-write' functions are similar to 'write', as indi-
cated in Figure 61. The flowchart for the driver is given in Appendix

C, Section 5-A.

5.9 DEMONSTRATION EXAMPLE

A serial RLU test example is given in this section to illustrate the

200

o'."'.-"._'.'. B T TP R AL WAL S WT TPV AT I TS TR GHUE- [T SPUE WAE I DO SDNr-Guar was




Pt

IRER

NREER

. v W a7
" »

g
7 T e e e Card

CSRI

ot ——{ volid addr. m
csrRe | 1
in —{valid _dote D))
AREQ | l
(a)
csm ___J 1
ouy ———(valid oddr. 8 dota D))y
CSR@ [ ]
AREQ ] L
(b)
CSRI | 1
out —valid address )
out —(valid_modified data))——
cspe 1 |
in —{valid dote D,
AREQ ] 1

(c)

and (¢) read-modify-write.

R

Figure 61 Handshake between the LMG and LM for (a) read, (b) write

.......
.............




use of the simulator. Figure 62, 63 and 64 are indirect command files

named R2A.DEM, R2B.DEM and R2C.DEM, respectively. Figure 65 1is a trans-
cript of CRT #1 during this example. Figure 66 shows the SM display on
the CRT #2 at three points in the example. Those characters with underlines
are input from the CRT.

In Figure 65 (a), the CI task does initialization before prompting
for a coomand. The first command @R2A leading with character @ indicates
that R2A is an indirect command file. The indirect command file R2A as
shown in Figure 62 is opened and the command stream in this file is exe-
cuted. Each line in the indirect command file is a command or parameter.
(If a line begins with the character ; or !, the CI task treats it as a
comment and ignores it.) Because the subsystem is not attached to the LM
at first, the return status from the NPINIT command is failure code -1§.

At the same time, referring to Figure 66 (a), the'NP ALERT' message is
shown on the CRT #2 screen as a special condition to indicate that no sub-
system is connected to the LM. The LM function command NPINIT and return
status failure code -1¢ are also displayed on the CRT. The transcript is
displayed on the CRT #1 because of the selection of 'full transcript on CRT'
during the initialization. If 'brief transcript on CRT' is chosen, only
the commands and parameters will be displayed on CRT. If 'no transcript on
CRT' is chosen, nothing will be displayed on CRT except a return status of
'failure'.

Now we connect the serial subsystem to the LM and issue the @R2A com-
mand again. All the procedures performing the serial subsystem test can be
seen on the CRT #1 as shown in Figure 65b. The NPINIT initializes and

diagnoses the NP. The diagnostic result shows that the NP has 8 free re-

202




.-.'-‘.,---,<...~_ BRI Al e e e
PP SR LY. PPN Dol TP S S ar W vy

TEST: TERIAL INFUT/COUTFUT (L LOADN FROM NF)
INFUT: GROLEF B 3 CLITPUT: GROWIF A

INTTIALIZE NF

A 7 wu WD ¥t e W

FINIT

FLOAD DIC TALK FROM NP
PROMLI

nIc

NF

FICONFIGURE GROUFP A A% SERIAL QUTRUT FROM NF
i
CONETG

NF
A
$CONFIGURE SROUP B AS SERIAL INPUT (FLAG) FROM NP

LUNFIG
NP
B

'3
k]

TRLUN NON-RESIDENT TASk

5
RLIN
SATH FOR LOCAL PROCESSING TASE - SERIAL INPUT/QUTFRUY

Lz AL

=10

STOF NON-REZIDENT TASK

!

I'_fl -s we uy
p
)
m

Figure 62 Indirect Command File R2A.DEM

203

I T




Indirect Command File R2B.DEM
204

. o
L . 6
ll-
~... Q
., ~
4 &
. hal
N Fr
5,
5 . Z o
(] Ll — wr..
S '
o) [SANY &
\ Wi i C. .
2 T B e Dy o
-- .&.
o -
hl -
o nu-.
i "%
+ L4
I. ¥
[} =
!L -‘l
t .
o r ~
.~

Ty

&

m

¢

[

) I

AT, SETRANAS ARLTAME RS ANE

e e e e e amm G 0 LARTRIRLL S 2
,....‘-._- " N J-n.vllt ---..-..- -.an- ..-o u.u ‘ o ”.ﬂ.--ﬂ.u.ﬂuaa aa.-. .”o ..l-d o 4 .. P A ol g
N " Lo e it vy e
Lo p g o b g WIARRICE LAY DL )




. L PR
vllie Te N .'-

PR A
B el Bl Bt

SRIUN NON-RESTDENT TAZK

RLIN
sHTF FOR LOCAL FROCESSING TASE - SERIAL INFUT/OUTFUT

-
2

Lozal
ST

STOF NON-RESIDENT TASE AND RESET LM

—wn Ve ur

STOF
RESET

Figure 64 Indirect Command File R2C.DEM

205




|
- LOGI
bt Bur! CMOINT
I CHETE AR ANSMER THE OUEST IONS AROUT
3 THE CLRT IR HOME LI CONTROL FOR YOLIR TERMINAL
s EXAMFLE OF CONTROL CHARS FOR CURSOR HOME URP @
'“. AIMEA 1 CHAR -—= 1k
- RCT 4 1 CHAR el § &
= DEC VT-S2 & CHARS ——~ 1B, 4%
e HAZE 1500 2 CHARS  ~——= 7E,12
-t HARDE COPY 1 CHAR -== 00
= #O0F CONTROL CHARS 7 3
’I ENTER CONTROL CHARS IN HEXASCII AT XX, XX .
-2 113, 45
i’ SELECT ONE OF THE FOLLOWING @
Gt ONO TRANTCRIFT ON CRT
Dot RRIFF O TRANSCRIPT ON DRT

o0 FLILL TRANSCRIFT O CRY

OO YOL WANT TO OFEN A LOG FILE P(Y/N)Y

CFEN OUTELT LOG FILE -

ENTER FILENAME

CERIALTET

e3¢ CUTFUT LG FILE "SERIALTST.LOG" IS OFENED $$$%

ENTER IDENTIFICATION

TE5T SERIAL SUERSYSTEM

EE AT ETTETEEELIET L LT EXL LR L LELEELLEE LT LLTEEELLELELT T ELE LD L-2 8 28 F LRI T LK

REMOTE LINE UNIT DEMOSTRATION (sic)
17:15:40 O9~JAN-31

Il TEST SFRIAL SURZYSTEM

IS EX T XS EETEES LR ELE TS LT LY L LE L LI LR L LR L- LT L X R L L L XX X R L LR KRR L
MY BRZA

NFINIT

R et L e L T LT R R R L e e S L Ll L e L Lt e R e Rl B
wxeenx ENTER NFINIT CMO MODULE #%%3%x%

STATUS: FAILURE CODE: -~-10
B R s D s o T T R R B A I e o o i A o kS o e N R e ]

Figure 65 (a) Display on CRT #1

206

. S et T - L e T
. . at Lt e - .  londe Soamdhenai
P R M e ) a tEm Bt A et P . aha




CMLI> _@RZA
NFINTT .
PPV EO U GPRE UPOr A SRR AT PR S R S S AT T AR e s S RS S IS R R 2L

srusitr ENTER NFINIT CMD MOOULE %%

NF DIAGNOSTIC RESULT
## DIAGNOSTIC COMPLETED
# OF FREE RECORDS = o

STATLS: SUCCE=SS
PRI R RGO R R STRTIRrAr SRS RS SR 8 ST RE A ST 8 S E S S S S A AR L SR S D L 2
FREMLD
OO RVIF I GV ST NI T VIR Rrareh S SRS TSN S SR ST TSP SRS 8 SRS R e
#na#a# ENTER FRGMLD CMD MODULE #3344

DATA I/70 (DIOY OR SLRSYSTEM DIAGNODSTIC (ssh) 7
nIiQ

FROM LMG OR NF 72

NF

STATUS: SLICCESS

FRFIISIIIII ISR A R SRR Brap R SRR RS ATE SIS TS S E 2 2 S S S S R b b i bt ekt i 2
CONFIG

PRI I RRrar ararRre ey SYRr ar e ey 3T SN 8 H S D LS S Al D D ot o 2 o o s o o o s b 2 b o 2 o ot i
ruwrdd ENTER CONFIG CMD MODULE st

FROM LM> OR NF 7
NF

GROUF A DR B 7
A

STATUS: SUCCESS

PTG RRrRTRT eSS e T ST S S RS S S SRS S S A A N Rl b bk ki it e e
CONFIG

PSRRI AR SrR ST e Y R RIS SR S DR S R ua it £ 8 D b b ok 2 s b sl b o sl b it s i b e
##u%ur ENTER CONFIG CMD MODULE #3333t

FROM LMS OR NP 7
NF

GROUF A DR B ?

E

STATUS: SUCCESS

PRI orarrarererararerar T ST S ST T ST TR R R RS S S S L LSRR AR A S S bl b i B e i S B
RIIN

trtbtt bbb ettttttttdtttttdttttttttttttttttrtttrbttetddtrreddttttettttbbttttet
#uxns ENTER RUN CMD MODULE #%%%%%

STATUS: SUCCESS
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#

LOCAL

Figure 65 (b) Display on CRT #1 |

207




e v P AR G R A RO DR AT N A T T A R S S L
P S A A O R R R .

N SELECT ONE OF THE DATA TRANSFER ROUTINES @
2 REF IN ALGIN SYNIN SINREF  SAMDIN  DINMOF
3 SECIN SINFLG  DINMOL

. SEQOUT  ALGOUT  SYNOUT DISOUT  SOUTA SOUTHE
YN SI0 CRTSIM
s EIU
i
.-'-,:3 00+ 00 = D000
:3:§ 07 & Q4 = 00536
" oE o 04 = 0013
= < SURSYSTEM DOWN
: STOF
- R rOr R PRI TR B R S R e e e e e e L L e e e S L L L L S e S ]
’ #¥¥unn ENTER STOEF CMD MODULE #%%#%®

STETUS: FAILLRE  CODE: =11
B e T 2 e L e L S L L e et L L ARl bt

‘
PR YICRN

I R
LANTEA MM
R PP

e Figure 65 (b) (Continued)

4T
R

208




MO @RIEH

XFRTEL

B B o A e i i It ot s o o I S o S S UL S S A S o S A SR S S S AP TR PR Rrr
se#gadt ENTER XFRTBL CMD MODLUILE %33

TAELE NAME 7
NFRE.
AT OR WRITE (R/W) 7

W
FECORD FUNCTION (0 - S)

0 ¢ WRTRECL 1 ¢ ECD
oo ROD 2 ¢ RACRELD
4  FWIREC St ERAWRT

4 0OF RECORDE (1 - 16)

4
kS

SAATING: SUCCESS

B o o e ik a2 T S A B T R X S = X S S St S AP R S R AV E RV I AP
*FRTEL

R R s ik i I o R e e s e o T S S A SR SR ATV RSE RS
eetktis ENTER XFRTBL CMD MODULE st

TABLE NAME 7

NFREL

READ OR WRITE (R/W) 7

R

# OF RECORDZ (1 -  3)
1

3A 07 09 00 1& OS5 07 FF FF FF FF FF FF FF 9% FF

RECORLD ID CODE : 3A
SURSYSTEM FAILURE LETECTED
# OF VALID BYTES @ 7
DATE: JAN 2 ( JAN Y FOR LEAP YEAR)
TIME: 18 3 5 (HOURIMINUTE)

Figure 65  (c) Display on CRT #1

209




R @RI
e -
NEIN .
B e O T Ok b T o T e T e R R s I o S B e T e P R
e exon CNMTES RON CMI MOOULE ###sex%

TTATLIS D ST ES S

s I B B B e S B A e o e o 20 S L A R B oty o b B e e e e |
LDCAL

SELELT ORE OF THE DATA TRANSFER ROUTINES: @

LEFTN ALGIN TYMNIN S INREF SAMIIN DI NMOE
TEOIN CINFLG LITNMOL

SITTRILT FILIOT SYNCOLT DI=oaT SOudTA SOUTR
YNNI ST CRTZIM

ST

Q0+ 00 = 0000

0% % 04 = 0024

STOF
B T O T R i i 1 2 a2 e 2 e e o ot 2 2 S A TR o e S S It ol b it L o o o o o0 ok b o e o e 2 b D o
ragrar ENTER STOF CMO MOLODULE ##ass

STATLE.: SOCCESS

B R A P R S R R R ™D x 2 s ake a e e e ot 2 ot o LIRS N T o Tt Dl b i o o ol D b b o B b e o ol o b i 20 Bk B
RESET

B T R N A R O R s s a0 i e 2 ok b 2 ot 2 S0 X AR SR ol S ok o ok b ol o oD oD o b ol ot h ol ph b ko ah i e b e e s
srexftr ENTER RESET CMD MOOULE a3

STATLES: SUCCESS
IR AR IR RS RO R AT SR R S AT SRR T A R e T S S S X L S R R R LS R L Db L R eIk i

CMI: E
538383 B30 36 41 35 36 30 30 6 30 35 3 3 00 0 3438 30 3 W I 30303033 I 3 3 3 0 S0 4383 3 31 30 30 03969 390 I I I ISR IR H A

END' OF DEMONSTRATICON

3636 35 35 35 3445 31 95 3 96 4 3 34 36 95 36 3 I 3 36 3 35 36 36 34 36 36 36 36 3436 I I 95 96 3 SHIE IS S I WM S MR HRR SRR AHNH 3 ¥ 3%
117 —-- STOF

Figure 65 (d) Display on CRT #1

210

M m e e e e . ..

PP L TR W e T T T e, N ) -
N o A A s e e el e al aaal ada e hadondetndoand . L




...............

Jroc gl
LMo NPINGT STATLUS: FATLIURE -10
SEETIAL CONDITIONS @

NE ALERT
oMl /4 STATUES 3
LMFLC LMF= LiXiZM IXsy STAL LM=T NPZT YCET LAST
E F & {0 OO00 00 0000 Gz DO Q0
LM RLUFFER
01 0:
FF FF
74 FC
7-  BC
170 BUFFER 1

-
'

L B 2 B )

12 00 00 00 00 CO 1% 07 FF FF FF FF FF
FF FC F Foo Do FC FF B4 D 7240 Fioo Fooo FU
70 FL FD EC O FC O FC FD Fe BC 74 FO FCFC
FC FCO FZ =& FC 7¢ FD D FO FO FC FC FULC

2Cn N

Q0 00 QD 00 00 O FF O OEF 76 FF OO0 10 =% OO0 FF  EF
764 FF O 00 310 2% 00 FF OEF 74 FF 00 10 &% QG FF  EF

Q0 FF EF
00 FF EF

74 FF 00 10 =% 00 FF OEF 76 FF 00 10

70 FFO Q0 10 2% 00 FF O EF 74 FF 00 10
1/0 BUFFER ©

74 FF 00 10 =% 00 FF EF 76 FF 00 (¢

Je O OFF 00 10 ¥ Q0 FF- EF 74 FF 00 10

74 FF 00 10 &% 00 FF O EF 764 FF 0C 10
76 FF 00 310 2% 00 FF O EF 764 FF GO 10

&

oG
)

00 FF EF
00 FF  EF
Q0 FF  EF
£ 00 FF EF

RUCER S Y

0o

Figure 66 (a) SM Display on CRT #2

211




- L
A T Rt P

'K

.

FEEET SO Y BLEAN

. .
RS

-
-

ARG RIS 4

IOSE=###1
LLMoMbe: STAITULS
ERA BTN Y418

CM 7 STATLES @
LIHFLC LMF =
(k= Q0
RLUIFFER
a1 Oz
FF FF
74 FLC
7°  BC
170 BUFFER 1

LM
01
g7
F
F4

< 10 Q4
74 FF 00
76 FF 00
76 FF 00
I1/00 BLFFER O
74 FF Q0
74 FF 00
76 FF Q0
74 FF 00
P L L e e -' ¥ n‘:- - ‘v" ":'

.................

STATUS: SUCCEDSS

CONLGTTIONE ¢

LM DXz HTAL LMET NFZT TLEY

o) 0105 00 0000 0020 Q400
00 00 Q00 Q0 00 Q0 13 07 FF FF FF FF

FF FL FLC
7C FC FI
FZ FC  FC

FC
ELC
o

nc  FC
FC FC
FC 76

FF
FD
FI

B4 LC 70 FC
Fa RC 7
nc fFC FC

FC
cn FC
FC FC

3 00 Q0 FF EF 76 FF 00 10 2% 00 FF
10 & 00 FF EF 7&4 FF 00 10 3% 00 FF
10 &9 00 FF EF 74 FF 00 10 &9 00 FF
10 8% QO FF EF 76 FF 00 10 't 00 FF
10 29 00 FF EF 76 FF 00O 10 &% 00 FF
10 C¥ Q0 FF EF 764 FF €0 10 &% OO FF
10 22 00 FF EF 74 FF 00 10 2% Q0 FF
10 &2 00 FF EF 74 FF 00 10 2% 00 FF

Figure 66 (b) SM Display on CRT #2

212

e T e e RS VOGS

L#sT

FF
L
o
Fi

EF
EF
EF
EF

EF
EF
EF
EF




......... A e R PRI R A I L SR S SN .
PR A D A e et A I IR I P A R T S L

»tla®at%es’a"tn

TOSR=as%]
Py STOR ZTATLES: FAILURE ~-11
SErCTa. CONDITIONS @

SHR DNIWN
My 7 BTATLIS @
LMFE LMFE nxom o STAL LMET NF=T YT L
1 FS 00 pelale b 0O QOO0 00D FLeaG E7
Ly BUFFER
Q1 Oz 01 Q0 00 OO 00 00 00 1z 07 FF FF FF FF FF
FF FF =7 FF FC FC FC D FC FF B4 I 70 FC O FC FO
24 Fi FE 70 FCOFDh EC FC O FC O FL F& BC 74 FL FC F
20 RDOF4 O FCOFCDOFC o9& FCO 74 FD o FCO FC FO FOF
1.2 RUFFER 1
o 0N Q4 1
76 FFOOQ0 10
V4HOOFF O OO 10
TE5OFF O Q00 10
1/ BUFFER O

-
'~
~!

OO0 FF EF 7464 FF 00 10
Q0 FF EF 24 FF 00 10
00 FF EF 76 FF QO 10
00 FF EF 74 FF 00 10

G

00 FF O LF
o0 FF EF
o0 FF FF
o0 FF  FEF

!
o
'~

K

=
=
e
o

RN oRe!

8 7

L

74 FF OO0 10 =¥ OO0 FF EF 74 FF 00 10 20 FF  EF
76 OFF Q00 10 ©¥ OO0 FF O EF 74 FF OO 10 o0 FF BEF
74 FF 00 1o =29 OO0 FF EF 74 FF Q0 100 @« 00 FFOEF
. 76 FF Q0 10 &% 00 FF EF 74 FF 00 10 =9 a0 FF  EF

Figure 66 (c) SM Display on CRT #2

213

e T e . e e v SRR LT, . - . e T
.l\-mb-'_._“ ORI, IV, ST T 8 . . RPN -9,




cords. The Data I/0 task is uploaded from the NP. Group A and Group B of
the ICA are both configured from the NP. The nonresident data 1/0 task is
executed by the RUN command. The LOCAL command offers a choice of data
transfer routines. In this example, the serial I/O (SIO) data transfer
routine is selected. Two numbers, an operator, and the result are trans-
ferred to the LMG and displayed on the CRT when the subsystem flag is
raised. For example, the first data transfer is displayed on CRT #1 as
09%04=0036. At the same time, referring to Figure 66 (b), we can see
these data in the input buffer (I/0 Buffer 1)

Now we change the transmission parity of the subsystem. A 'subsystem
down' message is shown on CRT #1 and the data I/0 task stops running.
Therefore, the STOP command gets return status failure code -11. This
failure code means that the nonresident task had already stopped running.
This same condition can be seen at CRT #2 as shown in Figure 66 (c).

In Figure 65 (c), @R2B is issued to examine the time and cause of the
subsystem failure.

In Figure 65 (d), @R2C is issued after correcting the errors that
caused the subsystem failure. The Data I/0 task restarts and the local
processing routine performs the data transfers. At the end of the demon-
stration, we stop the data I/0 task and reset the ICA configuration. The

E(EXIT) command is used to end the demonstration.

214

ot PR I TR S a et e s e e - SN PR 2 l'



o s . e T e R e s
R I i A R N I R B N R B A LIRS

OOl
2 8 & 2

M

. v
a e

% e

SECTION 6

SUBSYSTEMS

e
.

Subsystems are peripheral components that can be interfaced to an
avionic system through an LM. Two subsystems have been designed for the

o RLU demonstration: a serial subsystem and a synchro subsystem. The former
sends and receives serial data, while the latter handles analog data in the
s form of synchro voltages. Attached to each subsystem is a nameplate which
i holds data pertaining to its subsystem. When the LM is connected to a sub-
i system, it must be appropriately configured to be able to successfully
transfer data. The ICA configuration required for a subsystem is stored in

the subsystem's nameplate.

pendte et Ry

Each subsystem has programs stored in its nameplate which will run in
the LM when the subsystem is connected. Each program enables data to be
input from the subsystem, performs certain operations on the data, and then
outputs the processed data to the subsystem.

Discussion of the design of each subsystem requires that three impor-
X tant aspects be considered: the hardware of the subsystem, the related
3 software necessary, and the data stored in the corresponding nameplate.

. This section will discuss these three aspects for both the serial and syn-

chro subsystems.

6.1 SERIAL SUBSYSTEM

This subsystem is capable of transmitting three 8 bit bytes as serial
:E data to the LM. It can also receive and display twc 8 bit bytes from the
LM as serial data. The data to be transmitted can be set through thumbwheel

215

v
k4

B I L LI LT e e e a L - L ol R - . Lo
B S . L TR e a et mte i e Snsedetednmdatndetiatensdundtiiussloaniunnl esninainiindod




switches. The subsystem generates a parity bit for every byte of data to
be transmitted and is capable of performing a parity check on data received.
The data transfers are synchronous with the clock being provided by the LM.
Demonstration of the serial subsystem takes place by using the sub-
system as a calculator that performs additions and multiplications on
double-BCD-digit operands. Of the three bytes transmitted by the subsystem,
the first and third bytes define the double-BCD-digit operands, while the
second byte defines the operation. The LM performs the operation and pro-
duces a four-BCD-digit result. This result (two bytes) is then transmitted

by the LM and received and displayed by the subsystem.

6.1.1 HARDWARE DESIGN

The subsystem consists of two sections: the sending subsystem,
and the receiving subsystem. The sending subsystem can operate in two
modes - flag or refresh. In the flag mode data is transmitted only when
the STBSW switch on the panel is closed. Prior to closure of STBSW the
value of the thumbwheel switches can be set. On closure of STBSW, data on
the thumbwheel switches is latched until either the transmission is success-
ful, or the RESET switch on the panel is closed. In the refresh mode data
is transmitted as soon as it is requested by the LM. Data is latched only
as long as the transmission takes places. Changes on the thumbwheel
switches are detected during the periodic transmission cycles initiated by
the LM.

The block diagram of the sending subsystem is shown in Figure 67,
A detailed drawing of this circuit is presented in Appendix B, Section 6-A.
block diagram there are two inputs REQ/LOK and SCLK from the ICA and two

outputs SDATA and FLG/ACK to the ICA. The ICA requests transmission by

216




e
..... wolsdsqng Jujpuag Teiass jo weadeyq WooTd (9 2andyg
MSE1S 13as3y MsSaow
*
.
BNIWIL ANV
” 1003207 L &
[, 21907 J03LNOD
- LoF1ISTEOM A
b ot , '
ﬁ. | e . < r~ ...
3 ¥oY/5d /o = -
o ANNGOLIB ‘ VL |
201/03% | gy344n8 | 0/ .
3 v N155 N15S “
SIHOLIMS —vivas > .
133HMSWNHL ]
arg
_’ € . ] viva g
, A
& 8 VOIVYUINID ALRYY viz3s
E ) , vivg aNv
K 8 Aanva g WILAIANGD
-
ﬂ \\ MIVIYAS 01 13NWAYY ,...L
_ 8 _ 8 .
s3IV ]
vivd X
] .
dol1>3135 ,
ALIdV4 ...._
R
R
- oo
5

. ..3.......-. LRSI LV, “ . R T e e RRE oty N EIa e Sttt e, JEA Ty et iE_ vV



R

raising the REQ/LOK line. If MODSW is in the refresh mode the control logic
immediately responds by raising the FLG/ACK line. If MODSW is in -ne flag
mode, the control logic will raise FLG/ACK only when STBSW is closed. When
FLG/ACK goes high the data on the thumbwheel switches is latched into the
data latches by LOCKOUT.

When the ICA sees FLG/ACK high, it sends the clock pulses on
SCLK. The control logic uses SCLK to generate BITCOUNT and 'WORDSELECT'.
Depending on 'WORDSELECT' an 8 bit byte is selected from the outputs of one
of the three latches. 'BITCOUNT' determines which bit of this byte is to
be transmitted. That bit is output from the parallel to serial converter.
When the bit count goes to 9 the parity generator transmits the parity bit
in accordance with the PARITY selector switch. When 3 bytes have been
transmitted either of two things may happen depending on the mode. In the
refresh mode the last clock pulse goes low and then REQ/LOK goes low. This
sets LOCKOUT low and the data is no longer latched. On the other hand, in
the flag mode LOCKOUT needs to be high if the transmission was unsuccessful.
To keep LOCKOUT high the ICA brings REQ/LOK low first, and then brings the
last clock pulse low. This keeps the old data latched. If the transmission
was successful in the flag mode then the ICA brings the last clock pulse
low and then brings REQ/LOK low (similar to the refresh mode). LOCKOUT can
be set low also by closing RESET.

The second section of the hardware is the receiving subsystem.
The block diagram for the receiving subsystem is shown in Figure 68, A

detailed drawing of this circuit is presented in Appendix B, Section 6-A. As

shown in the block diagram, there are 3 input lines SDATA, SCLK, and REQ/LOK
from the ICA and one output line FLG/ACK to the ICA. When the ICA wants to

218

- . e s 4w . . .. - - - . . - T e . DR _‘-'»'- - ’h--' ,'.. B .'-“' ' N - .
e N e e L e e e e PRGNS G LI UV LI V- PEREPCRSRISS P S = e
AR T A CRL N Satal el cdesid cubesd el e &




N

-,

S

wa1s{sqng Sujayso2y TeTIag jo weadefq qoorgd 89 2an313

s¥aidag

xVf 513

a2
NS

2,
LNAGIQUAM 21507 TOWLNQY)
*
g R
il /4
AYIdS 1T Vivg Tivevy = Mewy =y,
207 /93y
YyTuwI )
%198
FALSTIOM
q437 Wovay 15313Q g + NASYIANOD
131 vNvd
Jo3¥3I vivq 131 1vay oL vivas
—pt
133735 ALiwvg AlTuvd IvINiIS

......

.......

219

-

.~ -
) A .
Y Nyt e’ .

o

A

-~ . = e - -
.-".L\-.h"‘ “1‘4‘5&‘”1".; P sl re

o

»



. . - v er
L TR T A Ay

display serial data it sets the REQ/LOK line high. The control logic im-
mediately responds by setting the FLG/ACK line high. When the ICA detects
that the FLG/ACK line is high it starts sending the clock pulses on SCLK
and simultaneously sends data on SDATA.

The serial to parallel conversion block accumulates 9 serial bits
with the help of the clock (SCLK) and sends them to the parity error detect
block. It also supplies the display with the 8 data bits. At the end of
9 bits WORDSTROBE goes high which allows the parity error detect block to
determine if there was a parity error in accordance with the parity select
switch. Also WORDCOUNT increments and enables the display to latch onto
. the 8 bits and causes the data to be displayed. If there is a parity error,
ERROR will go high and the control logic will set FLG/ACK low, which will
stop the transmission. Also the line to the RX parity error LED will go
high and 1light the LED. If no error occurs, at the end of the next 9 bits
the cycle will be repeated.

For the subsystem to function properly it must have the sending
subsystem connected to one group of the ICA and the receiving subsystem to
the other group of the ICA. The connections to the LM are made through

the 4 I/0 lines at the buffers of each subsystem.

6.1.2 SOFTWARE DESIGN

For the subsystem to function as a calculator there needs to be
a software program running in the LM to perform the calculations. This
program is stored in the nameplate of the subsystem and runs in the LM as
a nonresident task.

A broad picture of the processing performed by this program is
given in Figure 69 . A detailed description of the program, subroutines

220

Ml el B i e e e A T i e IR T T S M P L R Tk R

e 4 e A A e, T T S T T T e R TR Lt et G T e e e e
LA IE . St IR VR T, - WL T Sol Sl - Sl S i Wil e, T W S Y AL AP PRy duduieanhusnbsadendusshacthadl

-
- A



(START)

MNITIALIZATION

3 BYTES

YES

OUTPUT DATA IN

rvr INPUT AND
| SeaRED MEMORY

DELAY 1 Sec|

Figure 69

FALURE
RECORD

Serial 1/0 Program

221

COMMENTS

Set sSM
bofpes flag:

2 bytes 7G>r
Bep eperands,
] bJ*Q' \
ofuu‘\,f:u

&m‘.j input
Penf» ™m oFemhén

vesalt (h
Beo

dan:nj eul'fuk




used, and common data referenced, appears in Appendix C, Section 6~A. The ini-
tialization procedure consists of setting up the shared memory flags for
receiving data. Once this is performed the program attempts to input data
from the subsystem through the ICA, which must be configured properly prior
to running the program. If the input procedure is successful, the program

will have three bytes of BCD data. The second byte defines operation: add

[

or multiply, while the first and third bytes define the operands. The pro-
gram proceeds to implement the operation by calling the math service of the
executive. First the BCD operands will be converted to binary and then the
operation will be performed. The result of the operation is finally con-
verted to 4 BCD digits. This result is output back to the subsystem through
the ICA. If the output procedure is successful, the program transfers the
input and the output bytes to the data buffer in shared memory.

If an error occurs during input or output transmission, the pro-
gram will immediately write a failure record into the subsystem's nameplate.
The record will contain the time of failure and the error type. Conse-
quently the program will stop execution.

) For this subsystem the ICA needs to be configured as follows:
Group A - serial output, Group B - serial input (flag mode). The seven

configuration bytes for each group are in the nameplate and it is the duty

of the command interpreter to configure the ICA with these bytes, upon re-

ceiving the appropriate command.

For a detailed description of the program refer to Appendix

C ’ Section 6-A.

6.1.3 NAMEPLATE DATA

As was mentioned earlier, the nameplate holds the ICA configura-

222

- - . - . N . e .7 A " AT Lt -~ - W .".- ‘..'--'u R 'M_ _~"
T T N N T SR PP L n P
. b h N - . . . ~ - - . ) - - . - - - - . - a
B I S LI I R T RN TN ST I - B PG PRLPNIE PALPC IS PN stcheniinibrbedobdesinninisninednehindutrbe




tion bytes and the software program required by the subsystem to which it
is attached. The ICA configuration congists of 7 bytes for each group of
the ICA, totaling 14 bytes in all. The software program for the serial
subsystem consists of a total of 959 bytes. The header for this program is
also present in the nameplate and consists of 13 bytes. Lastly there is a
checksum byte at the end of the program. A map depicting how these elements
are stored in the nameplate is shown in Figure 70.

If an error occurs during an input or an output request of the
subsystem program, a failure record is written into the nameplate. Figure

48 shows the contents of a typical failure record,

6.2 SYNCHRO SUBSYSTEM

The synchro subsystem consists of an enclosure with two synchros. In
this subsystem, one of the synchros operates as an input device while the
other operates as an output device. The angle of the outputsynchro is
incremented by the angle of the input synchro periodically. This results
in a rotational motion of the output dial. The increments are made in 3
second intervals in order to meet the response-time limitations of the
synchro. The value of each angle is measured (input) or controlled (output)

in terms of three synchro voltages associated with the angle.

6.2.1 HARDWARE DESIGN

The hardware of this subsystem ~onsists of two synchros. It also
contains certain connections to the synchro windings which enable the syn-
chros to operate properly.

The synchros used in the implementation have windings with the

configuration shown in Figure 71(a). Such a winding configuration charac-

P P VS S S N A T S AP,




AT, DI PR
-m‘gn'.‘- SFCILIORAA

.
- . [
Aplrth

RO
g

et e

T et .

s

L X7 171
$5544

E Y7 LT

$5¢4s2
$5¢5s

+5pé

$5¥ép

$842¢
©Suad

$5¢ce

Figure 70 Map of Nameplate Data for Serial Subsystem

224

cofiq- tode, Lable size, #of geps. [_s8 !
. : . g2 2
ICA Gr. A con fiquration up 3
3 »
ICA G=.B Coquu‘l\l:t'o'\/ ‘: s
NPE, NPID, Checksum [ ]| ¢
#of NPS > ;
unused
PTO’\"M (
header :: 2
. 4 3
od do
[7] s
p2 3
#s 17
53 |t S
hs 2 | hame
pregvam - s o of
49 4 x [program
k¥ § 0
) 6
.l 7 }Shré address
g s
97 Q } end address
cc ]
Wl
$1__11, | initial 50
[ 13 checksum
cheeksum
unused




......
................
...........

S

S2 S3

(a) Differential synchro

S, Sa

(b) Transmitter synchro

AANAA
VVVVY
£
x

SuF

Vn ~—— Gwp
C
F———pu——
4k 4.99k
—L £ R v s
3, 2 2 Sa 3
Vs
(c) Modifications implemented
Figure 71 Synchro implementations
225
T T T T T T e L e T T s T T T O N T T e T




terizes a differential synchro, which is not suitable for this application.

What is desired is a transmitter synchro with windings in the form shown in
Figure 71 (b). Also, the voltages supplied to or sensed from the stator
windings should correspond to phase voltages. However, the synchro stator
does not have an accessible ground connection. Therefore a ground is

created through a resistor network between the windings. These modifications
are shown in Figure 71(c) which shows a winding wiring which is equivalent
to the synchro shown in Figure 71(b). The capacitor between the two rotor

windings is used to reduce the power factor of the windings.

6.2,2 SOFTWARE DESIGN

As mentioned earlier, to demonstrate the functioning of the sub-
system, the angle of the output synchro is incremented periodically every
3 seconds. The value of each increment is determined by the angle set on
the input synchro. 7o perform this demonstration a software program must
run in the LM. This program is stored in the electronic nameplate and is
loaded into the LM as a nonresident task.

A broad picture of the processing performed by this program is
given in Figure 72, A detailed description of the program, subroutines
used, and common data referenced, appears in Appendix C, Section 6-B. The ini-
tialization procedure consists of setting up the shared memory flags for
receiving data and initializing the ICA for synchro operation. Once this
is done the program inputs the three synchro voltages of the input synchro
through the ICA. The voltages are input in the form of three single byte
binary values of an ADC. The three voltages are tested to determine if
the synchro is malfunctioning or not. The first test checks if the sum

of the three voltages is zero. The gecond test calculates the value of

226




.......
-------------

(START >

N ITIALIZATION

et e

" %

P
RV

l' g

INPUT THREE
SYNCHRO VOLTAGES

bcr:nmh: e;

A

6, = 6+ B3

y

DETERMINE

Pok Bo

SYNCHRO YOLTAGES

OUTPVUT

SYNCHRO VoLTAGES

Pur O & 90
INTO
SHARED MEMORY

r;z LAY 3see

l

‘Q.Q"\‘.‘v“‘..‘
. 479 "p ’ -

Figure 72

Synchro 1/0 Program

P
.....

COMMENTS

Set SM

e fige

Check .‘jr
\bLtojes valld

0. s inrwl'
Sy;\ckro avj(z
B s
g e




el
PNCSL

. 'r"; K
RERL 724

.......

......

the synchro constant 'A' by calling upon the executives math service, and
compares it with the nominal value. If the voltages fail any of these
tests, the program writes a failure record into the subsystems nameplate
and exits. A typical failure record is shown in Figure 48 .
If the tests are successful, the program determines the input
synchro angle from the three voltages by using the math service of the

executive. It then adds this angle to the previous angle of the output

synchro. Next it uses the executive's math service again to determine the

»

three synchro voltages corresponding to the resulting output angle. Finally
the program outputs the three synchro voltages to the output synchro, writes

the input and output angles into SM, and waits for 3 seconds before it

repeats the procedure.

6.2.3 NAMEPLATE DATA

The nameplate holds the ICA configuration bytes and the software
program required by the subsystem. The configuration is 7 bytes for each
group - 14 bytes in all. The software program for the synchro subsystem
consists of 1061 bytes. The header for the program is also in the nameplate
and consists of 13 bytes. A map depicting how these elements are stored in

the nameplate is shown in Figure 73 . .

228




6y - :
P Fogg-codc,hbh:m,tofgp- °; !
i 2
$5pes TCA Gr. A. Configuralion up 3
‘ 86 |
45 Ica Gr.%.c,n.(,'.‘gmnﬁon ) s
65‘:': ® of NPs, NPID, ehecksum B2 (4
o2 7
unused
$£5%60
voqram
Pkcfder €o '
24 2
$56> 4e 3
4 b
0 Is
02 I3
¢ |7
53 t' s n
ram 39 2 Y ame
Ps o\
k3 ¢ C pregeam
q st
e ¢t O
"1} r{ start
&> e asldress
™ end
g" 1} address
93 u ] onkid sP.
-:‘0 2
$suay ! '3 check
$suas Checksum e
unused

Figure 73 Map of Nameplate Data for Synchro Subsystem

229

* US GOVEANMENT PRINTING OFFICE: 1983 -659-062/71 )

...........
- BN e T S T e et e e s e e .« e v . e e e
..... P U R AL A AR R P E R -~

3 . Pyl B S T T IR

PN AL N R R D NN
PR P T IPR) e LT ST T T T P PN S P s 8 DR
2 P PPN B L S O I T B NI YT S B S S I TG R R Tt Tt S,
i A wt el PRI, PR PSS S SR, TS R




it

Lg
3

NOR P A2

[y

modes - flag or refresh. 1In the flag mode data is transmitted only when
the STBSW switch on the panel is cloged. Prior to closure of STBSW the
value of the thumbwheel switches can be set. On closure of STBSW, data on
the thumbwheel switches is latched until either the transmission is success-
ful, or the RESET switch on the panel is closed. In the refresh mode data
is transmitted as soon as it is requested by the LM. Data is latched only
as long as the transmission takes places. Changes on the thumbwheel
switches are detected during the periodic transmission cycles initiated by
the 1LM.

The block diagram of the sending subsystem is shown in Figure 67.
A detailed drawing of this circuit is presented in Appendix B, Section 6-A.
block diagram there are two inputs REQ/LOK and SCLK from the ICA and two
outputs SDATA and FLG/ACK to the ICA. The ICA requests transmission by

216




